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Abstract

Hedge funds sometimes use mathematical techniques to “capture” the short-term volatility

of stocks, or perhaps other types of securities. This type of strategy is sometimes referred to as

statistical arbitrage, and we show that in the universe of large-capitalization U.S. stocks, even

quite naive techniques can achieve remarkably high information ratios. Here we present a simple

descriptive analysis of these strategies, and their relationship with equity trading costs.
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1 Introduction

Market makers in financial markets generate profits by buying low and selling high over short time
intervals. This occurs naturally, since as market makers they will offer a stock for sale at a higher
price then they are willing to pay for it, and more urgent buyers and sellers will have to accept
their terms. Market making, particularly that of New York Stock Exchange (NYSE) specialists, has
been studied in the normative context of academic finance, and this approach is represented by the
seminal papers of Hasbrouck and Sofianos (1993) and Madhavan and Smidt (1993).

High-speed trading strategies similar to market making have putatively been used by hedge funds
in recent years, and this type of strategy has sometimes been referred to as statistical arbitrage, or,
perhaps, “stat-arb” in the abbreviated patois of the Street. Statistical arbitrage of this nature can
be studied in the context of portfolio behavior, and hence is amenable to the methods of stochastic
portfolio theory, Fernholz (2002). Here we apply these methods to examine the potential profitability
of such a strategy applied to large-capitalization U.S. stocks.

Equal-weighted portfolios are dynamic portfolios in which all the stocks have the same constant
weights. Equal-weighted portfolios are of interest here since in such a portfolio, if a stock rises in
price relative to the others, this will generate a sell trade, and if the price declines this will generate
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a buy. Hence, such a portfolio will sell on up-ticks and buy on down-ticks, the way a market maker
would. Here we estimate the return and risk parameters of equal-weighted portfolios, and with these
parameters we can determine the efficacy of statistical arbitrage in a stock market.

In the next section we begin by presenting some of the basic ideas of stochastic portfolio theory.
In the subsequent sections we use these methods to analyze the behavior of large-capitalization U.S.
stocks. We then propose a hedging strategy to control the risk of the high-speed trading, and we
determine the information ratio of the hedged strategy. Mathematical proofs will not be included
here, but can be found in Fernholz (2002), and a mathematical discussion of “trading noise” is
included in an appendix.

2 An introduction to stochastic portfolio theory

Consider a market of n stocks represented by stock price processes X1, . . . , Xn that satisfy the
stochastic differential equations

d log Xi(t) = γi(t) dt +
d∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞), (1)

for i = 1, . . . , n, where (W1, . . . , Wd) is d-dimensional Brownian motion with d ≥ n, and the processes
γi and ξiν are measurable and adapted (which means that they do not depend on future events)
and satisfy certain regularity conditions (see Fernholz (2002), Definition 1.1.1). A stochastic process
of the form (1) is called a continuous semimartingale, and such processes are discussed in detail in
Karatzas and Shreve (1991). The value Xi(t) represents the price of the ith stock at time t, and we
shall assume that there is a single share of stock outstanding for each company, so Xi(t) represents
the total capitalization of the ith company at time t. In (1), d log Xi(t) represents the log-return of
Xi over the (instantaneous) time period dt. The process γi in (1) is called the growth rate process
for Xi, and the process ξiν measures the sensitivity of Xi to the νth source of uncertainty, Wν .

The covariance process for Xi and Xj is given by

σij(t) =
d∑

ν=1

ξiν(t)ξjν(t), t ∈ [ 0,∞),

with the notation σ2
i (t) = σii(t) for the variance processes. It is commonly assumed that the matrix

(σij(t)) is nonsingular, and we shall do so here. It would not be difficult to include dividend processes
in our model, but for simplicity we shall assume here that stocks pay no dividends.

Equation (1) is the logarithmic representation of the stock price processes, and this representation
is further developed in Section 1.1 of Fernholz (2002). With the logarithmic representation we
consider the growth rate γi, which can be interpreted as the expected rate of change of the logarithm
of the stock price at time t. The logarithmic representation is equivalent to the usual arithmetic
representation commonly used in mathematical finance (see, e.g., Karatzas and Shreve (1998)),
which in this case will be

dXi(t)
Xi(t)

= αi(t) dt +
d∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞), (2)

where the process αi is called the rate of return, and is related to the growth rate by

αi(t) = γi(t) +
σ2

i (t)
2

, t ∈ [ 0,∞), a.s.
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This equation follows from Itô’s rule (see Karatzas and Shreve (1991)), and is discussed in Section 1.1
of Fernholz (2002). The expression on the left of (2) is sometimes referred to as the instantaneous
return on Xi at time t. Our use of the logarithmic representation makes no assumption that we
wish to maximize logarithmic utility, or, for that matter, any utility function at all. The reason
that we use the logarithmic representation is because it brings to light certain aspects of portfolio
behavior that remain obscure with the conventional arithmetic representation. Let us now consider
portfolios, and their growth rates and variances.

We represent a portfolio π by its weight processes π1, . . . , πn where πi(t) is the proportion of the
portfolio invested in Xi at time t. The weight processes are assumed to be adapted and bounded,
and must sum to one, so we have π1(t) + · · · + πn(t) = 1, a.s., for all t. A negative value of πi(t)
indicates a short sale in Xi.

If we let Zπ(t) > 0 represent the value of π at time t, then, with the initial value Zπ(0), Zπ will
satisfy the stochastic differential equation

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

, t ∈ [ 0,∞). (3)

(Please note that with this definition of the portfolio value process, the portfolio will be self-financing
in the sense of, e.g., Duffie (1992).) Equation (3) shows that the instantaneous return on the portfolio
π is the weighted average of the instantaneous returns of the stocks in the portfolio.

We can apply Itô’s rule (see Fernholz (2002), Corollary 1.1.6) to express (3) in logarithmic form
as

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt, t ∈ [ 0,∞), a.s., (4)

where

γ∗π(t) =
1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)

(5)

is called the excess growth rate process. The last summation on (5) represents the portfolio variance
rate

σππ(t) =
n∑

i,j=1

πi(t)πj(t)σij(t), t ∈ [ 0,∞),

and this expression is identical to the portfolio variance rate in the arithmetic representation. We
can also define the covariance process of the ith stock with the portfolio π by

σiπ(t) =
n∑

j=1

πj(t)σij(t), t ∈ [ 0,∞).

From (5) we see that the excess growth rate is one half the difference of the weighted average of
the stock variances minus the portfolio variance, and it is shown in (8) below that the excess growth
rate γ∗π(t) is always positive for a portfolio with no short sales, at least if the portfolio holds more
than a single stock. In this sense the excess growth rate measures the efficacy of diversification in
reducing the portfolio risk. However, the excess growth rate measures more than the reduction of
portfolio risk. From (1) and (4), we see that the portfolio growth rate γπ will satisfy

γπ(t) =
n∑

i=1

πi(t)γi(t) + γ∗π(t), t ∈ [ 0,∞), a.s.,
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so at a given time t, π will have a higher growth rate than the weighted average of the growth rates
of its component stocks. Hence, superior diversification not only reduces risk, but also increases the
growth rate of a portfolio.

Let us suppose that η is a given portfolio. We can define the relative covariances of the stocks
with respect to η by

τη
ij(t) = σij(t)− σiη(t)− σjη(t) + σηη(t), t ∈ [ 0,∞),

for i, j = 1, . . . , n. For any portfolio π, we also have the relative variance and covariances

τη
ππ(t) =

n∑

i,j=1

πi(t)πj(t)τ
η
ij(t) and τη

iπ(t) =
n∑

j=1

πj(t)τ
η
ij(t), t ∈ [ 0,∞),

for i = 1, . . . , n. It is not difficult to verify that

τη
ηη(t) = 0, t ∈ [ 0,∞), a.s., (6)

and that

γ∗π(t) =
1
2

( n∑

i=1

πi(t)τ
η
ii(t)−

n∑

i,j=1

πi(t)πj(t)τ
η
ij(t)

)
, t ∈ [ 0,∞), a.s. (7)

This last equation demonstrates the numeraire invariance of the excess growth rate, i.e., that it
is the same whether measured absolutely or measured relative to an arbitrary portfolio η. In the
particular case that the portfolio π is the same as the portfolio η, (7) becomes

γ∗π(t) =
1
2

n∑

i=1

πi(t)τπ
ii(t), t ∈ [ 0,∞), a.s., (8)

since by (6) the relative portfolio variance term in (7) vanishes. If π holds more than a single stock,
then the nonsingularity of (σij(t)) implies that all the relative variances τπ

ii(t) are positive, so γ∗π(t)
must also be positive.

3 Portfolios with constant weights

Let us consider a constant-weighted portfolio π in which πi(t) = pi for all t and i = 1, . . . , n, where
the pi are positive constants such that p1 + · · ·+ pn = 1. In this case, (4) becomes

d log Zπ(t) =
n∑

i=1

pi d log Xi(t) + γ∗π(t) dt

= d log
(
Xp1

1 (t) · · ·Xpn
n (t)

)
+ γ∗π(t) dt, t ∈ [ 0,∞), a.s. (9)

By its very nature, the constant-weighted portfolio π will sell a stock when its price rises relative
to the rest of the portfolio, and buy when the price declines. From (9) we see that over the period
[0, t] the log-return on π will be

log
(
Zπ(t)/Zπ(0)

)
= log

(
Xp1

1 (t) · · ·Xpn
n (t)

)− log
(
Xp1

1 (0) · · ·Xpn
n (0)

)
+

∫ t

0

γ∗π(s) ds, a.s. (10)

The particular type of constant-weighted portfolio that interests us here is the case in which π

is equal-weighted, i.e., with π1(t) = · · · = πn(t) = 1/n for all t. For an equal-weighted portfolio π,
(10) becomes

log
(
Zπ(t)/Zπ(0)

)
= log n

√
X1(t) · · ·Xn(t)− log n

√
X1(0) · · ·Xn(0) +

∫ t

0

γ∗π(s) ds, a.s. (11)
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Hence, the log-return over the period [0, t] depends only on the change in the geometric mean of the
stock prices (i.e., capitalizations) and the accumulated excess growth.

Our plan is to use an equal-weighted portfolio to act as a market maker, and thus exploit the
short-term volatility generated by the difference in price between buy and sell trades. In order to
determine the efficacy this strategy, we must estimate the value of γ∗π(t) in (8), and we shall do so
in the next section.

It is important to remember that real stock portfolios cannot have precisely constant weights
because it is impossible to trade the stocks back to the weights as fast as the stock prices move.
Instead, real portfolios are rebalanced at discrete time intervals to bring the portfolio weights back
to weights that are nearly constant. Nevertheless, it is widely known and accepted in mathematical
finance that stochastic integrals of the form (10) and (11) provide a close approximation to discrete
trading strategies for real portfolios as long as the trading intervals are short enough (see Fouque
et al. (2000)). In practice, portfolio strategies with trading intervals of a month or less can be closely
approximated by continuous models of the form (10) and (11) (see Fernholz (2002)). However, it is
essential for the parameters in a continuous model to be compatible with the trading intervals used
in the strategy, and we shall develop this idea in the next section.

4 The estimation of excess growth rates

In this section we shall estimate the excess growth rate for an equal-weighted portfolio of large-
capitalization U.S. stocks, specifically, those stocks included in either the S&P 500 Index or the
Russell 1000 Index. These stocks are traded on the NYSE or NASDAQ, and the data we use are
the individual transaction prices, or “prints”, of the trades that occur on these exchanges each
day. From (8) it is apparent that the estimation of excess growth depends on the estimation of
the (relative) variance, since for an equal-weighted portfolio (8) shows us that γ∗π is simply one half
the average of the relative variances τπ

ii of the stocks in the portfolio. To estimate these relative
variances, it is necessary to sample the stock-price time series. To sample a time series, a particular
length of sampling interval must be chosen, and the value of the variance estimate may depend on
this choice (see, e.g., Fouque et al. (2000) for a discussion of this). This is particularly likely if
there is trading noise that may be caused by differences in price between buy and sell trades. Under
these circumstances, estimates of daily stock variance will depend on the sampling interval used,
with shorter sampling intervals usually generating higher estimates of daily variance than longer
sampling intervals (this is discussed in the appendix).

Suppose that we let VT represent the average daily relative variance of the stocks in the equal-
weighted portfolio, estimated by sampling at intervals of length T the time series for the relative
return of each stock compared to the equal-weighted portfolio. The graph of VT versus T is a form
of variogram, and a discussion of this type of analytical methodology can be found in Fouque et al.
(2000). In Figure 1 we see a variogram for the year 2005, and it shows that the estimate of daily
variance VT decreases from V1.5 = .000273 for a 1.5-minute sampling interval to V390 = .000169 for
a 390-minute interval, which is the total number of minutes the exchanges in the U.S. are open each
business day. By (8), these variances correspond to daily excess growth rates of about .0137% for
a sampling interval of 1.5 minutes, and about .0085% for a sampling interval of 390 minutes. To
annualize these numbers we must multiply by 250, the number of trading days in 2005. With this
multiple, we have annual excess growth rates of about 3.41% for the 1.5-minute sampling interval
and about 2.11% for the 390-minute sampling interval. Figure 1 indicates that sampling intervals
between 1.5 and 390 minutes will produce estimated excess growth rates between the two values we
have seen here.
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Figure 1: Estimated average daily VT for the year 2005,
with sampling intervals of T = 1.5, 3, 6, . . . , 390 minutes.

With estimates of annual excess growth that range from 2.11% to 3.41%, which value is appro-
priate for use in (11)? The appropriate estimate corresponds to the sampling interval closest to the
interval at which the portfolio π will be rebalanced back to equal weights. Hence, for a high-speed
trader who trades continuously, the 1.5 minute interval is appropriate, while for a trader who trades
only at the open and close of the market, the 390 minute interval should be used. It follows that
the high-speed trader will generate 3.41% of excess growth a year, while the open/close trader will
generate only 2.11%. More frequent trading allows the portfolio to capture more volatility.

5 A hedged strategy

An investment in an equal-weighted portfolio can be risky, because although the γ∗π term in (11) is
monotonically increasing in t, the log n

√
X1(t) · · ·Xn(t) term can vary quite a bit. However, if we con-

sider two equal-weighted portfolios, each rebalanced at different intervals, the log n
√

X1(t) · · ·Xn(t)
terms should be about equal, whereas we have seen above that there can be a systematic difference
in the γ∗π terms.

Consider two investments, one in an equal-weighted portfolio π that is rebalanced at intervals of
about 1.5 minutes, and one in an equal-weighted portfolio η that is rebalanced only at the open and
close of the market, i.e., at an interval of 390 minutes. Suppose that we buy $100 of π and sell $100
of η short. This long/short combination of portfolios is similar to the position a market maker takes,
since a market maker need not hold a large inventory of the stocks he trades, and will probably want
to close out his positions at the end of the day. The portfolio π will buy on downticks and sell on
upticks, but over the period of a trading day, it will not move far from the short portfolio η. This
will keep the total long/short position close to market-neutral during the trading day, and at the
close, both π and η are rebalanced back to equal weights, so their positions are neutralized.

The value of each of these investments can be approximated by an equation of the form (11),
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)

for the year 2005.

where the value of γ∗π(t) will correspond to a variance estimate based on a sampling interval of
1.5 minutes, and γ∗η(t) will correspond to a variance estimate based on a sampling interval of 390
minutes. In this case we have γ∗π(t) ∼= 3.41%, while γ∗η(t) ∼= 2.11%, so over a year the hedged
portfolio, which is long $100 of π and short $100 of η, will accumulate about $1.30.

In Figure 2 we see the log-return of a simulated continually-rebalanced equal-weighted portfolio
versus an equal-weighted portfolio which is rebalanced only at the open and the close of the market
each day. The simulation was run over the year 2005, the same year as we used for estimating
the excess growth rates. (Figure 2 has only 241 days of performance because no tick data were
collected for the nine days from October 24 through November 3 due to office closure resulting
from Hurricane Wilma.) We see from Figure 2 that relative log-return was about 1.26%, which for
the reduced 241-trading-day year is consistent with the 1.30% annual log-return calculated in the
previous paragraph. The mean and standard deviation for the daily log-returns in Figure 2 were
about .0052% and .0026%, respectively, for a daily information ratio of about 2.0. This implies
an annual information ratio of about 32 for the long/short combination. In real trading, it might
be difficult for a high-speed trader to actually trade every minute and a half, so a correction may
be needed to adjust for attainable order flow, and trading commissions could come into play if the
high-speed trader was not a broker/dealer or specialist. However, a trading strategy with an annual
information ratio of just 3 would produce a negative year only about once every seven centuries, at
least if log-returns followed a normal distribution. (No wonder specialists’ seats on the NYSE were
hereditary!)

We would like to estimate the total amount high-speed trading in large-capitalization stocks
that the U.S. markets could support. For a stock with a daily relative variance of .000273 the
corresponding 1.5-minute relative standard deviation will be about σ = .00103. With this value of
σ, the expected relative log-price change over a minute and a half will be about±

√
2/πσ = ±.000824.

In a trading day there are about 256 intervals of a minute and a half, so the expected cumulative
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absolute change in the log-prices corresponding to these trades will be about 21.1%. Hence, the
daily trading on a $100 equal-weighted portfolio that is traded about every minute and a half will
amount to approximately $21.10.

Let us say that current daily volume on the NYSE and NASDAQ is around 2 billion shares in
each market and that the average share price is $30, so about $120 billion of stocks are traded a day,
and let us suppose that of this $120 billion of stocks traded, $100 billion is in large-capitalization
stocks. Hence, if a $100-dollar equal-weighted portfolio trades about $21.10 a day, and if high-
speed traders with equal-weighted portfolios were on one side or the other of every trade involving a
large-capitalization stock, then the markets could support about $474 billion of such portfolios. (Of
course, the total holdings for long/short portfolio combinations would be far less than $474 billion,
due to cancellation between the long positions and the short positions.) At the rate of $1.30 a year
for each $100, the total annual income generated by these high-speed long/short portfolios would be
about $6.2 billion.

The trading cost due to market impact (i.e., excluding commissions) for U.S. stocks is estimated to
be about 11 basis points in Plexus (2006) (and is referred to as “Broker Impact” in that publication).
If we assume $100 billion volume a day over 250 trading days in the year, at 11 basis points the total
trading cost due to market impact will be about $27.5 billion. Why is this number so much larger
than the $6.2 billion we calculated for our high-speed trader above? First, since our trader had to
pay 2.11% for the hedging portfolio, he collected only 1.30% of the 3.41% a year generated by his
long portfolio. However, the 2.11% hedging expense of a high-speed market maker does not go to
the market maker’s trading counterparties, so they will pay the full 3.41% as trading cost, which
means that the total market trading cost will be about $16.1 billion rather than just the $6.2 billion
profit generated by high-speed market makers. Second, if the stock price fails to revert back to its
previous value the high-speed traders will earn nothing, but all the price changes involved would be
considered trading cost by the counterparties, whether or not the price reverts. Since short-term
price reversion probably occurs more than half the time (considering Figure 1), but not always,
trading costs will be somewhere between $16.1 billion and $32.2 billion, which is consistent with the
$27.5 billion we estimated above.

For simplicity, we have used equal-weighted portfolios in our example, and even with this naive
strategy, the information ratio indicates that a high degree of leverage would be possible. Sim-
ilar analysis can be carried out for any constant-weighted portfolio, and in this case some type
of optimization could be applied to the weights. For example, weights on more volatile stocks
might be increased to generate greater γ∗π, or decreased to control portfolio risk, and the weights
could be varied from day to day to adjust for changing market conditions. Optimization of the
long/short portfolio could perhaps eliminate much of the 2.11% hedging expense, and perhaps the
mean-reversion evident in Figure 1 could also be exploited in some manner (see appendix). The dis-
cussion in the previous paragraph indicates that with appropriate optimization, high-speed trading
strategies might be able to generate several times our naive estimate of $6.2 billion a year.

6 Conclusion

We have shown that dynamic portfolios in which the portfolio holdings are systematically rebalanced
to maintain almost constant weights will capture in a natural way the volatility that is present in
stock markets. These portfolios act as market makers by selling on upticks and buying on downticks.
We have shown that, in the absence of trading commissions, such portfolios can generate remarkably
high information ratios.
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Appendix: Variance estimation with trading noise

The model for a stock price X with trading noise that we propose here is

log X(t) = Y (t) + Z(t),

where Y is a random walk that satisfies

dY (t) = σ dW1(t),

with σ > 0 constant and W1 a Brownian motion, and where Z is an Ornstein-Uhlenbeck noise process
(see Karatzas and Shreve (1991)) that satisfies

dZ(t) = −αZ(t) dt + τ dW2(t), (12)

with a, τ positive constants and W2 a Brownian motion independent of W1. In this case, the
representation (1) becomes

d log X(t) = −αZ(t) dt + σ dW1(t) + τ dW2(t), (13)

and this price process satisfies the conditions for (1). The noise process Z incorporates a “restoring
force” −αZ(t) that returns the process to the origin. The steady-state distribution for Y is normal
with mean 0, and the covariance of Z(s) and Z(t) is (τ2/2α)e−α|t−s|, for s, t ≥ 0 (see Karatzas and
Shreve (1991)).

In (13) the variance rate for X is seen to be σ2 + τ2, but to estimate this rate, it is necessary to
sample the time series for log X(t) at regular intervals. Let us assume that at time 0 we start the
process Y at the origin and the process Z at its steady-state distribution. If for 0 ≤ s < t we sample
the time series for log X at s and t, then

Var
(
log X(t)− log X(s)

)
= E

(
log X(t)− log X(s)

)2

= E
(
Y (t)− Y (s)

)2 + E
(
Z(t)− Z(s)

)2

= σ2(t− s) +
τ2

α

(
1− e−α(t−s)

)
.

Hence, the expected value of the estimated variance parameter for log X using sampling intervals of
length T > 0 will be

VT =
1
T

(
σ2T +

τ2

α

(
1− e−αT

))
= σ2 + τ2

(1− e−αT

αT

)
,

with the limiting value V0 = limT→0 VT = σ2 + τ2, and decreasing asymptotically toward σ2 as T

increases toward infinity.
Trading noise that can be modeled by a system of the form (12,13) is likely to be amenable to

methods of prediction, in particular, the use of Kalman filters (see Lewis (1986)). With prediction,
it might be possible to improve upon the strategy outlined in Section 5.
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