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Abstract

Stock market diversity is a measure of the distribution of capital in an equity market. Di-

versity is higher when capital is more evenly distributed among the stocks in the market, and is

lower when capital is more concentrated into a few of the largest companies. This article reviews

the measurement of diversity, the behavior of diversity over time, and the effect of diversity on

portfolio performance.

1 Introduction

Stock market diversity, first considered in Fernholz (1999), is a measure of the distribution of capital
in an equity market. Diversity is higher when capital is more evenly distributed among the stocks in
the market, and is lower when capital is more concentrated into a few of the largest companies. There
exist many measures of diversity, of which entropy is perhaps the best known, but not necessarily
the most useful for our purposes. Market diversity, as measured by any of the measures of diversity,
appears to be mean-reverting over the long term with intermediate-term trends.

Certain measures of diversity generate portfolios, generically called diversity-weighted portfolios,
and these portfolios have a more even distribution of capital than the market. The relative return of a
diversity-weighted portfolio is perfectly correlated with the change in market diversity as determined
by the measure that generates it. Certain diversity-weighted portfolios can be shown to have a higher
return than the market portfolio, with about the same level of risk, at least over the long term.

It appears that active equity managers as a group hold portfolios with a distribution of capital
that is closer to a diversity-weighted portfolio than to the market. This may enhance the managers’
returns over the long term, but it also causes their short-term relative returns to be correlated to
changes in market diversity. There are a number of ways to measure the effect of changes in market
diversity on portfolio performance, but it appears that the commonly-used least-squares regression
techniques are likely to underestimate this effect.

In the next section we present some basic concepts from stochastic portfolio theory that we shall
need later on. In the subsequent sections we introduce measures of diversity, we consider portfolios
generated by measures of diversity, and we study the effect of changes in market diversity on portfolio
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performance. Mathematical proofs will not be included here, but can be found in Fernholz (2002),
along with a more comprehensive treatment of the theory in general.

2 Stochastic portfolio theory

Consider a market of n stocks represented by stock price processes X1, . . . , Xn that satisfy the
stochastic differential equations

d log Xi(t) = γi(t) dt +
n∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞), (1)

for i = 1, . . . , n, where (W1, . . . ,Wn) is (multivariate) Brownian motion, γi and ξiν , i, ν = 1, . . . , n

are measurable, adapted (which means that they do not depend on future events), and satisfy certain
regularity conditions (see Fernholz (2002), Definition 1.1.1). A stochastic process of the form (1) is
called a continuous semimartingale, and such processes are discussed in detail in Karatzas and Shreve
(1991). The value Xi(t) represents the price of the ith stock at time t, and we shall assume that there
is a single share of stock outstanding for each company, so Xi(t) represents the total capitalization
of the ith company at time t. In (1), d log Xi(t) represents the log-return (or continuous return) of
Xi over the (short) time period dt. The process γi in (1) is called the growth rate process for Xi,
and the process ξiν measures the sensitivity of Xi to the νth source of uncertainty, Wν .

The covariance process for Xi and Xj is given by

σij(t) =
n∑

ν=1

ξiν(t)ξjν(t), t ∈ [ 0,∞),

with the notation σ2
i (t) = σii(t) for the variance processes. It is commonly assumed that the matrix

(σij(t)) is strongly nonsingular in the sense that all its eigenvalues are bounded away from zero for
all t ≥ 0, and we shall do so here. It is not difficult to add dividend processes to our model, but for
simplicity we shall assume here that stocks do not pay dividends.

Equation (1) is the logarithmic representation of the stock price processes, and this representation
is further developed in Section 1.1 of Fernholz (2002). The logarithmic representation is quite general,
and is equivalent to the usual arithmetic representation commonly used in mathematical finance (see,
e.g., Karatzas and Shreve (1998)). The use of the logarithmic representation makes no assumption
that we wish to maximize logarithmic utility, or, for that matter, any other utility function. We use
the logarithmic representation because it brings to light certain aspects of portfolio behavior that
remain obscure with the conventional arithmetic representation.

In the logarithmic representation we consider the growth rate γi, which can be interpreted as the
expected rate of change of the logarithm of the stock price at time t. In the arithmetic representation,
the rate of return αi, rather than the growth rate γi, is considered for each stock Xi. The relation
between these two variables is

αi(t) = γi(t) +
σ2

i (t)
2

, t ∈ [ 0,∞) a.s.,

and this follows from Itô’s rule (see Karatzas and Shreve (1991)), and is discussed in Section 1.1 of
Fernholz (2002). Let us now consider portfolios, and their growth rates and variances.

We represent a portfolio π by its weight processes π1, . . . , πn where πi(t) is the proportion of the
portfolio invested in Xi at time t. The weight processes are assumed to be adapted and bounded,
and must sum to one, so we have π1(t) + · · · + πn(t) = 1, a.s., for all t. A negative value of πi(t)
indicates a short sale in Xi.
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If we let Zπ(t) represent the value of π at time t, then Zπ will satisfy the stochastic differential
equation

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

, t ∈ [ 0,∞). (2)

This equation shows that the instantaneous return on the portfolio π is the weighted average of the
instantaneous returns of the stocks in the portfolio.

It can be shown (by application of Itô’s rule, see Fernholz (2002), Corollary 1.1.6) that (2) can
be expressed in logarithmic form as

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt, t ∈ [ 0,∞), a.s., (3)

where

γ∗π(t) =
1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)

(4)

is called the excess growth rate. The last summation on (4) represents the portfolio variance rate for
π, and this expression is identical to the portfolio variance rate in the arithmetic representation. It
can be seen from (4) that the excess growth rate is one half the difference of the weighted average
of the stock variances minus the portfolio variance. In this sense the excess growth rate measures
the efficacy of diversification in reducing the portfolio risk.

However, the excess growth rate measures more than the reduction of portfolio risk. It can be
shown that the excess growth rate γ∗π(t) is always positive for a portfolio with no short sales, at least
if the portfolio holds at least two stocks (Fernholz (2002), Proposition 1.3.7). From (1) and (3), we
see that the portfolio growth rate γπ will satisfy

γπ(t) =
n∑

i=1

πi(t)γi(t) + γ∗π(t), t ∈ [ 0,∞), a.s.,

so at a given time t, π will have a higher growth rate than the weighted average of the growth rates
of its component stocks. Hence, superior diversification not only reduces risk, but also increases the
growth rate of a portfolio.

Perhaps the most important portfolio we shall consider is the market portfolio µ with weights

µi(t) =
Xi(t)

X1(t) + · · ·+ Xn(t)
, t ∈ [ 0,∞), (5)

for i = 1, . . . n. For this portfolio with appropriate initial conditions, the portfolio value is

Zµ(t) = X1(t) + · · ·+ Xn(t), t ∈ [ 0,∞), a.s., (6)

which is the total capitalization of the market, as we would expect for the market portfolio. The
weights µi(t) are called capitalization weights or market weights. From (5) and (6) we have

log µi(t) = log Xi(t)− log Zµ(t), t ∈ [ 0,∞), a.s.,

so
d log µi(t) = d log Xi(t)− d log Zµ(t), t ∈ [ 0,∞), a.s., (7)

and we see that the logarithmic change in the market weight µi is equal to the log-return of Xi

relative to the market. Using (3) and (7), we can express the log-return of a portfolio π relative to
the market as

d log
(
Zπ(t)/Zµ(t)

)
=

n∑

i=1

πi(t) d log µi(t) + γ∗π(t) dt, t ∈ [ 0,∞), a.s.
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Figure 1: Capital distribution of the S&P 500 Index.
December 30, 1997 (solid line), and December 29, 1999 (broken line).

This equation shows that the relative log-return of π is the weighted average of the relative log-
returns of the stocks in the portfolio, plus the excess growth rate γ∗π.

3 Stock market diversity

The capital distribution curve of the market, or of a cap-weighted index, is the graph of the market
weights arranged in decreasing order. Figure 1 shows the capital distribution curves for the S&P
500 Index on December 30, 1997 and December 29, 1999. As we see from the chart, there was a
significant concentration of capital into the largest stocks in the market over this period. We shall
now discuss methods by which the level of diversity of the market can be measured quantitatively.
We shall also investigate the idea that a more even distribution of capital among the larger and
smaller stocks is likely to improve portfolio performance.

Let µ(t) = (µ1(t), . . . , µn(t)) represent the vector of market weights at time t. A measure of
diversity is a function of the market weights that is positive, symmetric, and concave. The archetypal
measure of diversity is perhaps the entropy function

S(µ(t)) = −
n∑

i=1

µi(t) log µi(t), t ∈ [ 0,∞),

introduced by Shannon (1948) when he invented information theory. Entropy can be used to measure
market diversity, but other measures are more suited to our purposes. The function

Dp(µ(t)) =
( n∑

i=1

µp
i (t)

)1/p

, t ∈ [ 0,∞), (8)

where 0 < p < 1, is a measure of diversity that satisfies 1 < Dp(µ(t)) ≤ n(1−p)/p (see Fernholz
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Figure 2: Cumulative change in market diversity, 1927–2004.

(2002)). Besides having a bounded logarithm, the measure Dp has the advantage that the parameter
p can be adjusted to accommodate particular circumstances that may arise in practice.

In Figure 2 we see the cumulative changes in the diversity of the U.S. stock market over the
period from 1927 to 1999, measured by Dp with p = 1/2. The chart shows the cumulative changes
in diversity due to capital gains and losses, rather than absolute diversity, which is affected by
changes in market composition and corporate actions. Considering only capital gains and losses has
the same effect as adjusting the “divisor” of an equity index. The values used in Figure 2 have
been normalized so that the average over the whole period is zero. We can observe from the chart
that diversity appears to be mean-reverting over the long term, with intermediate trends of 10 to 20
years. The extreme lows for diversity seem to accompany bubbles: the Great Depression, the “nifty
fifty” era, and the “irrational exuberance” period.

We say that a function S generates a portfolio π if

log
(
Zπ(t)/Zµ(t)

)
= log S(µ(t)) + Θ(t), t ∈ [ 0,∞), a.s., (9)

where the drift process Θ is of locally bounded variation. In this case, S is called the generating
function of π, and π is called a functionally generated portfolio (see Fernholz (2002) for a development
of these ideas). Since Θ is of locally bounded variation, and since processes of bounded variation have
no correlation with other processes, it follows from (9) that the relative log-return of π has correlation
one with the change in the logarithm of the generating function. Hence, the generating function
“explains” all of the quadratic variation of the relative performance of a functionally generated
portfolio.

It can be shown that if a function S is positive over the range of the market weights and twice
continuously differentiable, then it generates a portfolio, so there is a good supply of functionally
generated portfolios. Here we are interested in portfolios generated by measures of diversity, and it
can be shown that these portfolios have a more even distribution of capital than the market. It can
also be shown that these portfolios have increasing drift processes.
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Figure 3: Simulation of a Dp-weighted portfolio, 1939–1998
1: log Dp(µ(t)); 2: Θ(t); 3: log

(
Zπ(t)/Zµ(t)

)

As an example, let us consider the portfolio π generated by Dp. This portfolio has weights

πi(t) =
µp

i (t)(
Dp(µ(t))

)p , t ∈ [ 0,∞), (10)

for i = 1, . . . , n, and (9), in differential form, becomes

d log
(
Zπ(t)/Zµ(t)

)
= d log Dp(µ(t)) + (1− p)γ∗π(t) dt, t ∈ [ 0,∞), a.s. (11)

The portfolio π is called a Dp-weighted or, generically, a diversity-weighted portfolio. Such portfolios
are practical for equity management; in fact, a Dp-weighted portfolio with p = .76 and composed of
the stocks in the S&P 500 Index has been used for institutional investors in the U.S. (see Fernholz
et al. (1998)). Since 0 < p < 1, it can be seen from (10) that relative to the market, π is
underweighted in the larger stocks and overweighted in the smaller stocks, and that it has an
increasing drift function.

We have seen that log Dp(µ(t)) is bounded, and since the last term in (11) is positive, it will
eventually dominate the right-hand side of the equation. This argument has been used by Fernholz
et al. (2005) to show that relative arbitrage exists in certain hypothetical markets, and it also shows
that in actual markets, a bias toward the smaller stocks will augment relative portfolio performance
over the long term. Moreover, this enhanced performance does not depend on higher risk for the
smaller stocks since there is no assumption that smaller stocks have higher risk in the market model
in (1). It is not difficult to see that for the U.S. market, over periods of the order of magnitude
of the relaxation time of the time series in Figure 2, the risk must be about the same as that of
the market. Hence, for investors with an investment horizon of 10 to 20 years, diversity-weighted
portfolios would seem to have an advantage over cap-weighted indices.

To get some idea of the behavior of a diversity-weighted portfolio for actual stocks, we ran a
simulation using the stock database from the Center for Research in Securities Prices (CRSP) at
the University of Chicago. The data included 60 years of monthly values from 1939 to 1998 for
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exchange-traded stocks after the removal of closed-end funds, REITs, and ADRs not included in the
S&P 500 Index. From this universe, we considered a cap-weighted large-stock index consisting of
the largest 1000 stocks in the database for those months that the database contained 1250 or more
stocks, and the largest 80% of the stocks those months that the database contained fewer than 1250.
Against this index, we simulated the performance of the corresponding Dp-weighted portfolio, with
p = 1/2. No trading costs were included.

The results of the simulation are presented in Figure 3: Curve 1 is the change in the generating
function, Curve 2 is the drift process, and Curve 3 is the relative return. Each curve shows the
cumulative value of the monthly changes induced in the corresponding process by capital gains or
losses in the stocks, so the curves are unaffected by monthly changes in the composition of the
database. As can be seen, Curve 3 is the sum of Curves 1 and 2. The drift process Θ(t) was the
dominant process over the period, and was remarkably stable, with a total contribution of 46.4
percentage points to the relative return. To calculate the total relative return of an investment in
the Dp-weighted index versus an investment in the cap-weighted index, dividend payments must
also be considered. However the difference in dividend payments between the two portfolios was
quite small, with a total contribution over the entire period of only 1.3% in favor of the cap-weighted
index. (Figure 3 does not include dividend payments.)

4 Manager performance and the diversity cycle

Active equity managers strive to find portfolios that will outperform the market. Since we have seen
that portfolios that are less concentrated into the largest stocks are likely to outperform the market
at least over the long term, it might not be surprising to find that active equity managers have a
similar weighting bias. If active managers have a bias toward more diverse portfolios, we would
expect their short-term relative returns to depend to some extent on changes in the diversity of the
market. Active managers would be expected to do better when diversity is increasing, and worse
when diversity is decreasing. This was shown indeed to be the case by Fernholz and Garvy (1999).

In Figure 4 we have plotted the annual logarithmic return relative to the S&P 500 Index of
the median manager from the Domestic Equity Database of Callan Associates for the years 1973
through 2003 versus the logarithmic change in Dp for the largest 1000 stocks in the CRSP universe
of stocks. Each data point is represented in the chart by the year to which it pertains. The diagonal
line is the least-squares regression line. Analysis of the regression indicates that more than half of
the annual quadratic variation of the managers’ relative log-returns is explained by the change in
diversity (R2 = .58). The slope of the regression line is not due to the “outliers” at 1998 and 2000;
a robust regression procedure, least-trimmed-squares (see Marazzi (1993)), gives a slightly steeper
slope. Hence, we find that change in diversity is an important variable in explaining relative manager
performance.

Since the time series in Figure 2 appears to be mean-reverting with intermediate trends, it may
be possible to forecast changes in diversity to some extent. If the performance of active managers
depends on change in diversity, then such forecasts could be useful in asset allocation between
active and passive equity management. During those periods where diversity appears to be rising,
assets could be allocated to active managers; during periods of declining diversity, passive equity
management would probably be preferable. Of course, Figure 4 represents the effect of diversity
changes on active managers as a group; it is also important to be able to measure the effect of
diversity change on a specific manager, and we shall consider this problem in the next section.
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Figure 4: Annual relative manager performance vs. change in diversity.

5 The distributional component of equity return

A conventional method for measuring the effect of a change in diversity on the portfolio performance
is to use least-squares regression with some “size factor” as the explanatory variable. However, there
are several problems with this method, among them that the choice of size factor is rather arbitrary,
and that least-squares regression carries a number of assumptions that do not pertain in reality.
Here we propose an alternative methodology developed in Fernholz (2001).

In Figure 1 we observed the capital distribution curves for the S&P 500 Index on December
30, 1997 and December 29, 1999. As we see in the chart, there was a considerable concentration
of capital into the largest stocks between these two dates. A change of this nature in the capital
distribution curve is likely to have an effect on the relative return of a portfolio, and we would like
to be able to measure what that effect is.

Figure 5 is a stylized version of the capital distribution curves in Figure 1. Suppose that the
solid line represents the capital distribution at a given time t0, and the broken line represents the
distribution t1 sometime later. Suppose a particular stock starts at position A at t0 and ends up at
position C at time t1. In this case, the weight of this stock in the market (or index) has increased,
so it has had a higher return than the market over the period [t0, t1]. However, it has fallen in rank:
if it had maintained its initial rank, it would be at position B at time t1. The return implied by
a move from A to B is called the distributional component of the relative return of this stock over
[t0, t1]. In this case, the distributional component of the relative return is greater than the relative
return itself, so the difference, which is called the residual return, is negative.

By calculating the distributional components of the relative returns of all the stocks in a portfo-
lio, and taking the weighted average of these, we can determine the distributional component of the
relative return of an arbitrary portfolio. For a diversity-weighted portfolio, the distributional com-
ponent is identical to the change in diversity over the period, so our direct measurement procedure
can be considered to be a generalization of the generating-function decomposition in (11).
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To test this method of direct measurement, we apply it to the a simulated portfolio of an “active-
core” manager over the ten-year period from 1989 through 1998. We can see from Figure 2 that
over this period market diversity declined substantially, so if our simulated manager shared the
median manager’s the propensity to overweight small stocks, this should have been detrimental to
performance.

Figure 6 shows the simulated manager’s log-return relative to the S&P 500 Index, and we see
that the manager outperformed the index by about 10% over the first five years, but over the
second five years there was actually slight underperformance. What happened? In Figure 7 we see
the cumulative distributional component of the manager’s return, calculated by the direct method
(solid line). The declining curve indicates that the change in the capital distribution over the period
caused a significant problem for this manager.

Suppose now that we had used standard least-squares regression to analyze the simulated man-
ager’s performance. First, since there is no canonical time series to represent “size”, we must
arbitrarily choose such a series: let us use the relative return of the largest 100 stocks in the S&P
500 for our size series. In Figure 7, the broken line represents the estimate of the size component
of the manager’s relative return using least-squares regression. The regression estimate shows only
about a fifth of the cumulative effect shown by the direct measurement. It may be of interest to
note that a robust regression procedure, least trimmed squares (see Marazzi (1993)), gives estimates
quite close to our direct measurement.

6 Conclusion

Market diversity appears to be an important factor in equity portfolio performance. Holding a
portfolio that is closer to diversity weights than to capitalization weights should improve relative
performance over the long term. Change in diversity appears to be highly correlated with the
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relative performance of managers, and since change in diversity may be amenable to statistical
prediction, this could have significant implications for asset allocation between active and passive
equity managers. Direct measurement shows a greater effect on portfolio return due to changes in
the capital distribution than measurement by least-squares regression.
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Figure 6: Relative return of a simulated manager.
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Figure 7: Cumulative distributional component for the simulated manager.
Solid line: distributional component by direct measurement.

Broken line: size component by regression with the top 100 stocks.
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