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Abstract

In an equity market model with “Knightian” uncertainty regarding the relative risk and co-
variance structure of its assets, we characterize in several ways the highest return relative to
the market that can be achieved using nonanticipative investment rules over a given time hori-
zon, and under any admissible configuration of model parameters that might materialize. One
characterization is in terms of the smallest positive supersolution to a fully nonlinear parabolic
partial differential equation of the Hamilton-Jacobi-Bellman type. Under appropriate con-
ditions, this smallest supersolution is the value function of an associated stochastic control
problem, namely, the maximal probability with which an auxiliary multidimensional diffusion
process, controlled in a manner which affects both its drift and covariance structures, stays in
the interior of the positive orthant through the end of the time-horizon. This value function is
also characterized in terms of a stochastic game, and can be used to generate an investment
rule that realizes such best possible outperformance of the market.

Keywords and Phrases: Robust portfolio choice, model uncertainty, arbitrage, fully nonlinear
parabolic equations, minimal solutions, maximal containment probability, stochastic control, stoch-
astic game.

AMS 2000 Subject Classifications: Primary 60H10, 91B28; secondary 60G44, 35B50, 60J70.
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1 Introduction
Consider an equity market with asset capitalizations X(t) = (X1(t), · · · , Xn(t))′ ∈ (0,∞)n at
time t ∈ [0,∞) , and with covariance and relative risk rates α(t,X) = {αij(t,X)}1≤i,j≤n and
ϑ(t,X) = (ϑ1(t,X), · · · , ϑn(t,X))′ , respectively. At any given time t , these rates are nonantici-
pative functionals of past-and-present capitalizations X(s), 0 ≤ s ≤ t ; they are not specified with
precision but are, rather, subject to “Knightian uncertainty”. To wit, for a given collection

K =
{
K(y)

}
y∈Sn

, Sn := [0,∞)n \ {0} (1.1)

of nonempty compact and convex subsets on Rn × Sn , where Sn is the space of real, symmetric,
positive definite (n× n) matrices and 0 is the origin in Rn , they are subject to the constraint(

ϑ(t,X), α(t,X)
)
∈ K(X(t)) , for all t ∈ [0,∞) . (1.2)

In other words, the pair (ϑ, α) must take values at time t inside the compact, convex set K(X(t))
which is determined by the current location of the asset capitalization process; but within this
range, the actual value

(
ϑ(t,X), α(t,X)

)
is allowed to depend on past capitalizations as well. (To

put it a little differently: the constraint (1.2) is not necessarily “Markovian”, as long as the sets in
(1.1) are not singletons.)

Under these circumstances, what is the highest return on investment relative to the market
that can be achieved using nonanticipative investment rules, and with probability one under all
possible market model configurations that satisfy the constraints of (1.2)? What are the weights in
the various assets of an investment rule that accomplishes this?

Answers: Subject to appropriate conditions, 1/U(T,X(0)) and

Xi(t)Di logU
(
T − t,X(t)

)
+

Xi(t)

X1(t) + · · ·+Xn(t)
, i = 1, · · · , n , 0 ≤ t ≤ T (1.3)

respectively. Here the function U : [0,∞)×(0,∞)n → (0, 1] is the smallest nonnegative solution,
in the class C1,2 , of the fully nonlinear parabolic partial differential inequality

∂U

∂τ
(τ, z) ≥ L̂U(τ, z) , (τ, z) ∈ (0,∞)× (0,∞)n (1.4)

subject to the initial condition U(0, · ) ≡ 1 , with

L̂f(z) = sup
a∈A(z)

n∑
i=1

n∑
j=1

zi zj aij

(
1

2
D2
ijf(z) +

Dif(z)

z1 + · · ·+ zn

)
. (1.5)

We use in (1.3), (1.5) and throughout this paper, the notation Dif = ∂f /∂xi ,D2
ijf = ∂ 2f/∂xi∂xj ,

Df = (D1f, · · · , Dnf)′ , D2f =
{
D2
ijf
}

1≤i,j≤n and define

A(y) :=
{
a ∈ Sn : (θ, a) ∈ K(y) , for some θ ∈ Rn

}
, y ∈ Sn . (1.6)

We call the function U(· , ·) the arbitrage function, as U(T,x) (x1 + · · · + xn) gives the
smallest initial capital starting with which an investor, who uses nonanticipative investment rules,
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can match or outperform the market portfolio by time t = T , if the initial configuration of asset
capitalizations is X(0) = x = (x1, · · · , xn)′ ∈ (0,∞)n at t = 0 ; and does so with probability one
under any “admissible” market configuration that might materialize. It is perhaps worth noting that
this function U(· , ·) is characterized almost entirely in terms of the prevalent covariance structure
α . The relative risk ϑ enters only indirectly, namely, in determining the family of sets (1.6) which
are admissible for the covariance structure. Put a bit differently, the only rôle ϑ plays is to ensure
the asset capitalization process X(·) = (X1(·), · · · , Xn(·))′ takes values in (0,∞)n .

Under additional regularity conditions, U(T,x) is the value of a stochastic control problem:
the maximal probability that the diffusion process Y(·) = (Y1(·), · · · , Yn(·))′ with initial config-
uration Y(0) = X(0) = x ∈ (0,∞)n, values in the punctured nonnegative orthant Sn of (1.1),
infinitesimal generator

n∑
i=1

n∑
j=1

yi yj aij(t,y)

(
1

2
D2
ijf(y) +

Dif(y)

y1 + · · ·+ yn

)
,

and controlled through the choice of covariance function a : [0,∞) × Sn → Sn which satisfies
a(t,y) ∈ A(y) for all (t,y) ∈ [0,∞) × Sn , does not hit the boundary of the orthant [0,∞)n

by time t = T . Under appropriate conditions the function U(· , ·) satisfies then, in the notation of
(1.5), the Hamilton-Jacobi-Bellman (HJB) equation

(∂/∂τ)U(τ, z) = L̂U(τ, z) , on (0,∞)× (0,∞)n . (1.7)

Relation to Extant Work: Stochastic control problems of the “maximal probability of contain-
ment” type were apparently pioneered by Van Mellaert & Dorato (1972); see also Fleming &
Rishel (1975), pp. 157-158. The “Knightian uncertainty” constraint imposed in (1.2) is very sim-
ilar to the formulation of stochastic control and stochastic game problems for one-dimensional
diffusions pioneered by William Sudderth and developed by him and collaborators in a series of
articles that includes Pestien & Sudderth (1985), Heath et al. (1987), Orey et al. (1987), Sudderth
& Weerasinghe (1989); indeed, the developments in sections 6-8 of our paper can be construed as
a multidimensional extension of the Sudderth approach.

We rely strongly on Krylov’s (1989, 2002) work, which studies solutions of stochastic differen-
tial equations with constraints on the drift and diffusion coëfficients in terms of “supermartingale
problems”, and characterizes sets of stochastic integrals via appropriate supermartingales.

The approach we adopt has a lot in common with the effort, started in the mid-1990’s, to un-
derstand option pricing and hedging in the presence of uncertainty about the underlying volatility
structure of assets. We have been influenced by this strand of work, particularly by the papers of
Lyons (1995), Romagnoli & Vargiolu (2000), Gozzi & Vargiolu (2002), Vargiolu (2001), Talay &
Zheng (2002); other important papers include Avellaneda et al. (1995), El Karoui et al. (1998),
Cvitanić et al. (1999), Frey (2000), Ekström & Tysk (2004), Meyer (2006), Denis & Martini
(2006), whereas the recent preprints by Soner et al. (2010.a,b) contain very relevant results. Simi-
lar in this spirit is the strand of work by Shige Peng and his collaborators, surveyed in Peng (2010),
regarding the so-called “G−Brownian motion” which exhibits volatility uncertainty; see also Vor-
brink (2010), as well as Nutz (2010) for extensions to settings where the range of uncertainty is
stochastic. Whereas in both these strands the relevant fully nonlinear parabolic-type partial dif-
ferential (so-called “Black-Scholes-Barenblatt”) equation has typically a unique solution, here the
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main interest arises from lack of uniqueness on the part of the rather similar, fully nonlinear equa-
tion (1.7).

Let us mention that optimization problems in stochastic control, mathematical economics and
finance that involve model uncertainty have also been treated also by other authors, among them
Gilboa & Schmeidler (1989), Gundel (2005), Shied & Wu (2005), Karatzas & Zamfirescu (2005),
Föllmer & Gundel (2006), Schied (2007), Riedel (2009), Bayraktar & Yao (2010), Bayraktar et al.
(2011) and Kardaras & Robertson (2011); see also the survey by Föllmer at al. (2009).
Preview: Sections 2 and 3 set up the model for an equity market with Knightian model uncer-
tainty regarding its volatility and market-price-of-risk characteristics, and for investment rules in
its context. Section 4 introduces the notion of optimal arbitrage in this context, whereas section 5
discusses the relevance of the fully nonlinear parabolic partial differential inequality of HJB type
(1.4), (1.5) in characterizing the arbitrage function and in finding an investment rule that realizes
the best outperformance of the market portfolio. Section 6 presents a verification-type result for
this equation. Sections 7 and 8 make the connection with the stochastic control problem of maxi-
mizing the probability of containment for an auxiliary Itô process, controlled in a nonanticipative
way and in a manner that affects both its drift and dispersion characteristics. Finally, section 9
develops yet another characterization of the arbitrage function, this time as the min-max value of a
zero-sum stochastic game; the investment rule that realizes the best outperformance of (optimal ar-
bitrage with respect to) the market, is now seen as the investor’s best response to a “least favorable”
market model configuration.

2 Equity Market with Knightian Model Uncertainty
We shall fix throughout a canonical, filtered measurable space (Ω,F), F = {F(t)}0≤t<∞ , and
assume that Ω contains the space W ≡ C

(
[0,∞); (0,∞)n

)
of all continuous functions w :

[0,∞) → (0,∞)n . We shall specify this canonical space in more detail in section 7 below, when
such detail becomes necessary.

On this space, we shall consider a vector of continuous, adapted processes X(·) = (X1(·), · · · ,
Xn(·))′ with values in (0,∞)n ; its components will represent stock capitalizations in an equity
market with n assets, and thus the total market capitalization will be the sum

X(t) := X1(t) + · · ·+Xn(t) , 0 ≤ t <∞ . (2.1)

We shall also fix throughout a collection K =
{
K(y)

}
y∈Sn

of nonempty, compact and convex
subsets of Rn × Sn as in (1.1).

We shall consider Rn−valued functionals ϑ(· , ·) =
(
ϑ1(· , ·), . . . , ϑn(· , ·)

)′ and Sn−valued
functionals α(· , ·) = (αij(· , ·))1≤i,j≤n , all of them defined on [0,∞)×Ω and progressively mea-
surable (see Karatzas & Shreve (1991), Definition 3.5.15). We shall assume that, for every contin-
uous function w : [0,∞)→ (0,∞)n and T ∈ (0,∞) , these functionals satisfy the constraint and
integrability conditions, respectively:(

ϑ(T,w), α(T,w)
)
∈ K

(
w(T )

)
,

∫ T

0

(∥∥ϑ(t,w)
∥∥2

+ Tr
(
α(t,w)

))
dt <∞ . (2.2)

We shall also consider (n× n)−matrix-valued functionals σ(· , ·) =
(
σiν(· , ·)

)
1≤i,ν≤n , where

σ(t ,w) =
√
α(t ,w) is a square root of α(t ,w) : α(t ,w) = σ(t ,w)σ′(t ,w) . (2.3)
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2.1 Admissible Systems
For a given collection of sets K as in (1.1) and a fixed initial configuration x = (x1, · · · , xn)′

∈ (0,∞)n of asset capitalizations, we shall call admissible system a collection M consisting
of the underlying filtered space (Ω,F), F = {F(t)}0≤t<∞ , of a probability measure P on it,
and of a pair of processes (X(·),W (·)) , with W (·) = (W1(·), · · · ,Wn(·))′ an n−dimensional
F−Brownian motion and X(·) = (X1(·), · · · , Xn(·))′ taking values in (0,∞)n . These processes
have the dynamics

dXi(t) = Xi(t)
n∑
ν=1

σiν(t,X)
[
dWν(t) + ϑν(t,X) dt

]
, Xi(0) = xi > 0 (2.4)

for some progressively measurable functionals ϑ(· , ·) and σ(· , ·) which satisfy (2.2), (2.3) above.
We shall think of this admissible system M as a model subject to “Knightian” uncertainty;

this is expressed by the requirement
(
ϑ(t,X), α(t,X)

)
∈ K

(
X(t)

)
in (2.2), (1.1) about the market

price of risk and the covariance structure of the asset capitalization vector process X(·) . In order
not to lose sight of the underlying probability space, we shall denote by PM (respectively, EPM )
the probability measure (resp., the corresponding expectation operator) on this space. Finally,
M(x) will denote the collection of all such admissible systems or “models” with initial configu-
ration x = (x1, · · · , xn)′ ∈ (0,∞)n . We shall think of M(x) as a meta-model, a collection of
admissible models; and of the collection M =

{
M(x)

}
x∈(0,∞)n

as a “family of meta-models”.
The interpretation is that the components of the driving Brownian motion W (·) represent the

independent factors of the resulting model; the entries of the matrix σ(t,X) are the local volatility
rates of the asset capitalization vector process X(·) at time t ; the entries of the matrix α(t,X) as
in (2.3) represent the local covariance rates; whereas the components of the vector ϑ(t,X) are the
market price of risk (also called relative risk) rates prevalent at time t . In particular,

β(t,w) := σ(t,w)ϑ(t,w) =
√
α(t,w) ϑ(t,w) (2.5)

is, in the notation of (2.3), the vector of mean rates of return for the various assets at time t , when
the equations of (2.4) are cast in the more familiar form

dXi(t) = Xi(t)
(
βi(t,X) dt +

n∑
ν=1

σiν(t,X) dWν(t)
)
, i = 1, · · · , n . (2.6)

The integrability condition of (2.2) guarantees that the process X(·) takes values in (0,∞)n ,
P−a.s.; it implies also that the exponential process

L(t) := exp
{
−
∫ t

0

ϑ′(s,X) dW (s)− 1

2

∫ t

0

∥∥ϑ(s,X)
∥∥2

ds
}
, 0 ≤ t <∞ (2.7)

is well-defined and a strictly positive local martingale, thus also a supermartingale.
This process L(·) plays the rôle of a state-price-density or “deflator” in the present context.

Just as in our earlier works Fernholz & Karatzas (2010.a), (2010.b) as well as Ruf (2011) – mostly
in a Markovian context, and without model uncertainty – an important feature of this subject is
that L(·) has to be allowed to be a strict local martingale, i.e., that EP(L(T )) < 1 be allowed to
hold for some, if not all, T ∈ (0,∞) .
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2.2 Supermartingale Problems
The constraint (1.2) brings us in the realm of the Krylov (1989, 2002) approach, which studies
stochastic differential equations with constraints on the drift and diffusion coëfficients in terms
of “supermartingale problems”. In particular, Theorem 2.2 of Krylov (2002) shows that, under a
suitable regularity condition on the family of sets K in (1.1), solving the stochastic equation (2.4)
subject to the requirements of (2.2) can be cast as a supermartingale problem, as follows.

Consider the nonlinear partial differential operator associated with (2.6), (2.5), namely

Lf(z) = F
(
D2f(z), Df(z), z

)
with (2.8)

F (Q, p, z) := sup
(θ,a)∈K(z)
b=

√
a θ

( 1

2

n∑
i=1

n∑
j=1

zi zj aij Qij +
n∑
i=1

zi bi pi

)
, (Q, p, z) ∈ Sn×Rn×(0,∞)n .

The supermartingale problem is to find a probability measure P = PM on the filtered measurable
space (Ω,F), F = {F(t)}0≤t<∞ , under which X(·) takes values in (0,∞)n a.s., and the process

u
(
t,X(t)

)
−
∫ t

0

(
∂u

∂s

(
s,X(s)

)
+ Lu

(
X(s)

))
ds , 0 < t <∞

is a local supermartingale for every u : (0,∞)×(0,∞)n → R of class C1,2 with compact support.
The regularity condition on the family K in (1.1) that we alluded to earlier, mandates that the

function
F (Q, p, · ) in (2.8) is Borel measurable, for every (Q, p) ∈ Sn × Rn . (2.9)

If, in addition, the family of sets K in (1.1) satisfies the linear growth condition

sup
(θ,a)∈K(y)
b=

√
a θ

( n∑
i=1

n∑
i=1

yi yj aij +
n∑
i=1

(yi bi)
2
)1/2

≤ C
(
1 + ‖y‖

)
(2.10)

and the upper-semicontinuity condition

lim sup
[0,∞)n 3 z→y

F (Q, p, z) ≤ F (Q, p,y) , ∀ (Q, p) ∈ Sn × Rn (2.11)

for every y ∈ Sn and some real constant C > 0 , then Theorem 3.2 in Krylov (2002) shows that
the family {PM}M∈M(x) is convex and sequentially compact in the topology of vague convergence
of probability measures.

2.3 Markovian Admissible Systems
We shall also consider the subcollection M∗(x) ⊂ M(x) of Markovian admissible systems, for
which the functionals ϑ(· , ·) and α(· , ·) as in (2.2)-(2.4) are given as

ϑ(t,X) = θ(t,X(t)) , α(t,X) = a(t,X(t)) , (2.12)

with measurable functions θ : [0,∞)× (0,∞)n → Rn , a : [0,∞)× (0,∞)n → Sn that satisfy(
θ(t, z), a(t, z)

)
∈ K(z) , ∀ (t, z) ∈ [0,∞)× (0,∞)n . (2.13)
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Under the condition (2.10) it follows then from so-called Markovian selection results (Krylov
(1973); Stroock & Varadhan (1979), chapter 12; Ethier & Kurtz (1986), section 4.5) that the state
process X(·) of (2.4) can be assumed to be (strongly) Markovian under PM , M ∈ M∗(x) . We
shall make this selection whenever admissible systems in M∗(x) are invoked.

3 Investment Rules
Consider now an investor who is “small”, in the sense that his actions do not affect market prices.
He starts with initial fortune v > 0 and uses a rule that invests a proportion $i(t) = Πi

(
t,X
)

of current wealth in the ith asset of the equity market, for any given time t ∈ [0,∞) and all
i = 1, · · · , n ; the remaining proportion $0(t) := 1 −

∑n
i=1$i(t) is held in cash (equivalently,

in a zero-interest money market). Here Π : [0,∞) ×W → Rn is a progressively measurable
functional assumed to satisfy the requirement∫ T

0

(∣∣Π ′(t,w)σ(t,w)ϑ(t,w)
∣∣ + Π ′

(
t,w
)
α(t,w) Π

(
t,w
))

dt < ∞ , ∀ T ∈ (0,∞)

(3.1)
for every continuous function w : [0,∞) → (0,∞)n . We shall denote throughout by P the
collection of all such (non-anticipative) investment rules, and by P∗ the sub-collection of all
Markovian investment rules, that is, those that can be expressed as $i(t) = πi

(
t,X(t)

)
, 0 ≤ t <

∞, i = 1, · · · , n for some measurable function π : [0,∞)× (0,∞)n → Rn .
An investment rule is called bounded, if the functional Π is bounded uniformly on [0,∞)×W ;

for a bounded investment rule, the requirement (3.1) is satisfied automatically, thanks to (2.2). An
investment rule is called portfolio, if the functional Π satisfies

∑n
i=1 Πi = 1 on [0,∞) ×W ;

and a portfolio is called long-only, if Π1 ≥ 0, · · · ,Πn ≥ 0 also hold on this domain. A long-only
portfolio is clearly bounded.

Given an initial wealth v ∈ (0,∞) , an investment rule Π ∈ P , and an admissible model
M∈M(x) , the resulting wealth process Z(·) ≡ Z v,Π(·) satisfies the dynamics

dZ(t)

Z(t)
=

n∑
i=1

Πi

(
t,X
) dXi(t)

Xi(t)
= Π ′

(
t,X
)
σ(t,X)

[
ϑ(t,X)dt+ dW (t)

]
(3.2)

and the initial condition Z(0) = v. In conjunction with (2.7) in the differential form

dL(t) = −L(t)
(
ϑ(t,X)

)′
dW (t) (3.3)

and the product rule of the stochastic calculus, this gives

L(t)Z v,Π(t) = v+

∫ t

0

L(s)Z v,Π(s)
(
σ′(s,X) Π

(
s,X

)
−ϑ(s,X)

)′
dW (s) , 0 ≤ t <∞ . (3.4)

For any initial configuration x = (x1, · · · , xn)′ ∈ (0,∞)n , initial wealth v ∈ (0,∞) , investment
rule Π ∈ P and admissible model M ∈M(x) , the product L(·)Z v,Π(·) is therefore under PM
a continuous, positive local martingale, thus also a supermartingale. Once again, it is important
that this process be allowed to be a strict local martingale.
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3.1 The Market Portfolio
The choice of Markovian investment rule m ∈ P∗ given by

mi(t, z) =
zi

z1 + · · ·+ zn
, i = 1, · · · , n , t ∈ [0,∞) , z ∈ (0,∞)n

leads to the long-only market portfolio

µ(t) = X(t)/X(t) with weights µi(t) = Xi(t)/X(t) , i = 1, · · · , n , 0 ≤ t <∞ (3.5)

in the notation of (2.1). It follows from (3.2) that investing according to this portfolio amounts to
owning the entire market, in proportion to the initial wealth: Zv,m(·) = vX(·)/X(0) .

3.2 Ramifications
Reading (3.4) for the market portfolio of (3.5), and recalling (2.1), leads to

L(t)X(t) = X(0) +

∫ t

0

L(s)
(
σ′(s,X)X(s)− ϑ(s,X)X(s)

)′
dW (s) , 0 ≤ t <∞ (3.6)

or equivalently d
(
L(t)X(t)

)
= −L(t)X(t)

(
ϑ̃(t,X)

)′
dW (t) , where

ϑ̃(t,w) := ϑ(t,w)− σ′(t,w)w(t)

w1(t) + · · ·+ wn(t)
satisfies

∫ T

0

∥∥ϑ̃(t,w)
∥∥2

dt <∞ (3.7)

for all (t,w) ∈ [0,∞)×W , thanks to (2.2). With this notation, it follows from (3.6) that

L(·)X(·) = (x1 + · · ·+ xn) · exp
{
−
∫ ·

0

(
ϑ̃(t,X)

)′
dW (t)− 1

2

∫ ·
0

∥∥ϑ̃(t,X)
∥∥2

dt
}
.

On the strength of the integrability condition in (3.7), the Dambis-Dubins-Schwartz representation
(e.g., Karatzas & Shreve (1991), p. 174) of the PM−local martingale

N(·) :=

∫ ·
0

(
ϑ̃(t,X)

)′
dW (t) with quadratic variation 〈N〉(·) =

∫ ·
0

∥∥ϑ̃(t,X)
∥∥2

dt <∞

gives
L(T )X(T ) = (x1 + · · ·+ xn) · eB(u)−(u/2)

∣∣∣
u=〈N〉(T )

, 0 ≤ T <∞ , (3.8)

where B(·) is one-dimensional, standard Brownian motion under PM . Whereas the equations of
(2.4) can be written as

dXi(t) = Xi(t)

(∑n
j=1 αij(t,X)Xj(t)

X1(t) + · · ·+Xn(t)
dt +

n∑
ν=1

σiν(t,X) dW̃ν(t)

)
(3.9)

for i = 1, · · · , n , with

W̃ (·) := W (·) +

∫ ·
0

ϑ̃(t,X) dt . (3.10)
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We have then the representation

Λ(·) :=
X(0)

L(·)X(·)
= exp

{∫ ·
0

(
ϑ̃(t,X)

)′
dW (t) +

1

2

∫ ·
0

∥∥ϑ̃(t,X)
∥∥2

dt
}

= exp
{∫ ·

0

(
ϑ̃(t,X)

)′
dW̃ (t)− 1

2

∫ ·
0

∥∥ϑ̃(t,X)
∥∥2

dt
}

(3.11)

for the normalized reciprocal of the deflated total market capitalization, and

dµi(t) = µi(t)
(
ei − µ(t)

)′
σ(t,X) dW̃ (t) , i = 1, · · · , n (3.12)

for the dynamics market weights in (3.5); here ei is the ith unit vector in Rn .

4 Optimal Arbitrage Relative to the Market
Let us consider now the smallest proportion

u(T,x) = inf
{
r > 0 : ∃ Πr ∈ P, s.t. PM

(
Z rX(0),Πr(T ) ≥ X(T )

)
= 1 , ∀M ∈M(x)

}
(4.1)

of the initial total market capitalization X(0) = x1 + · · · + xn which allows the small investor,
starting with initial capital u(T,x)X(0) and through judicious choice of investment rule in the
class P , to match or exceed the performance of the market portfolio over the time-horizon [0, T ] ;
and to do this with PM−probability one, under any model M ∈ M(x) that might material-
ize. We shall refer to u(· , ·) of (4.1) as the arbitrage function for the family of meta-models
M = {M(x)}x∈(0,∞)n , and think of it as a version of the arbitrage function studied in Fernholz &
Karatzas (2010.a) which is “robust” with respect to M .

The quantity of (4.1) is strictly positive; see Proposition 1 below and the discussion following
it. On the other hand, the set of (4.1) contains the number r = 1 , so clearly

0 < u(T,x) ≤ 1 .

If u(T,x) < 1 , then for every r ∈
(
u(T,x), 1

)
– and even for r = u(T,x) when the infimum

in (4.1) is attained, as indeed it is in the context of Theorem 1 below – there exists an investment
rule Πr ∈ P such that

Z X(0),Πr(T ) ≥ 1

r
X(T ) > X(T ) = Z X(0),m(T ) , PM − a.s.

holds for every M∈M(x) . In other words, the investment rule Πr leads then to strong arbitrage
relative to the market portfolio in the terminology of Fernholz & Karatzas (2009) – here with the
extra feature that such arbitrage is now robust, i.e., holds under any possible admissible system
or “model” that might materialize. If, on the other hand, u(T,x) = 1 , then such outperformance
of (equivalently, strong arbitrage relative to) the market is just not possible over all meta-models
M∈M(x) . In either case, the highest return on investment relative to the market

b(T,x) := sup
{
b > 0 : ∃ Π ∈ P, s.t. PM

(
Z X(0),Π(T ) ≥ bX(T )

)
= 1 , ∀M ∈M(x)

}
,

achievable using (non-anticipative) investment rules, is given as b(T,x) = 1/u(T,x) ≥ 1 .
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Remark 1. Instances of u(T,x) < 1 occur, when there exists a constant ζ > 0 such that either

inf
a∈A(z)

(
n∑
i=1

zi aii
z1 + · · ·+ zn

−
n∑
i=1

n∑
j=1

zi zj aij
(z1 + · · ·+ yn)2

)
≥ ζ (4.2)

or (
(z1 · · · zn)1/n

z1 + · · ·+ zn

)
· inf
a∈A(z)

(
n∑
i=1

aii −
1

n

n∑
i=1

n∑
j=1

aij

)
≥ ζ (4.3)

holds for every z ∈ (0,∞)n ; see the survey paper Fernholz & Karatzas (2009), Examples 11.1
and 11.2 (as well as Fernholz & Karatzas (2005), Fernholz et al. (2005) for additional examples).

Proposition 1. The quantity of (4.1) satisfies

u(T,x) ≥ Φ(T,x) > 0 , where Φ(T,x) := sup
M∈M(x)

(
EPM

[L(T )X(T ) ]

x1 + · · ·+ xn

)
. (4.4)

Furthermore, under the conditions (2.9)-(2.11), there exists an admissible system Mo ∈ M(x)
such that

Φ(T,x) =
EPMo

[L(T )X(T ) ]

x1 + · · ·+ xn
. (4.5)

Proof: Take an arbitrary element r > 0 of the set on the right-hand side of (4.1), and an arbi-
trary admissible system M ∈ M(x) . There exists then an investment rule Πr ∈ P with the
inequality Z rX(0),Πr(T ) ≥ X(T ) valid PM−a.s. On the strength of (2.7) and (3.4), the process
L(·)Z rX(0),Πr(·) is a PM−supermartingale; thus (3.8) and (3.7) lead to

r(x1 + · · ·+ xn) = rX(0) ≥ EPM[
L(T )Z rX(0),Πr(T )

]
≥ EPM[

L(T )X(T )
]
> 0 . (4.6)

The inequality u(T,x) ≥ Φ(T,x) in (4.4) follows now from the arbitrariness of r > 0 and
M ∈ M(x) . The existence of an admissible system Mo ∈ M(x) that satisfies (4.5) follows
from Theorem 3.4 in Krylov (2002), in conjunction with the dynamics of (2.4) and (3.3). �

Although strong arbitrage relative to the market may exist within the framework of the models
M∈M(x) studied here (cf. Remark 1), the existence of a strictly positive supermartingale defla-
tor process L(·) as in (2.7) proscribes scalable arbitrage opportunities, also known as Unbounded
Profits with Bounded Risk (UPBR); this is reflected in the inequality u(T,x) > 0 of (4.4). We
refer the reader to Delbaen & Schachermayer (1995.b) for the origin of the resulting NUPBR con-
cept, and to Karatzas & Kardaras (2007) for an elaboration of this point in a different context,
namely, the existence and properties of the numéraire portfolio.

Finally, let us write (4.4) as

Φ(T,x) = sup
M∈M(x)

uM(T,x) , where uM(T,x) :=
EPM

[L(T )X(T ) ]

x1 + · · ·+ xn
. (4.7)

We have for this quantity the interpretation

uM(T,x) = inf
{
r > 0 : ∃ Πr ∈ P, s.t. PM

(
Z rX(0),Πr(T ) ≥ X(T )

)
= 1

}
as the “arbitrage function for the model M ∈ M(x) ”, at least when the matrix σ(t,w) in in-
vertible for every (t,w) ∈ (0,∞) ×W and when (PM,F)−martingales can be represented as
stochastic integrals with respect to the Brownian motion W (·) in (2.4).
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5 A Fully Nonlinear PDI
Consider now a continuous function U : [0,∞)× (0,∞)n → (0,∞) with

U(0, z) = 1 , z ∈ (0,∞)n , (5.1)

which is of class C1,2 on (0,∞)× (0,∞)n and satisfies on this domain the fully nonlinear partial
differential inequality (PDI)

∂U

∂τ
(τ, z) ≥

n∑
i=1

n∑
j=1

zizj aij

(
1

2
D2
ijU(τ, z) +

DiU(τ, z)

z1 + · · ·+ zn

)
, ∀ a ∈ A(z) . (5.2)

We shall denote by U the collection of all such continuous functions U : [0,∞) × (0,∞)n →
(0,∞) which are of class C1,2 on (0,∞) × (0,∞)n and satisfy (5.1) and (5.2). This collection
U is nonempty, since we can take U(· , ·) ≡ 1 ; however, U need not contain only one element.

Let us fix an initial configuration x ∈ (0,∞)n and consider any admissible system M ∈
M(x) . Applying Itô’s rule to the process

Ξ(t) := X(t)L(t)U
(
T − t,X(t)

)
, 0 ≤ t ≤ T (5.3)

in conjunction with (3.6) and (2.4), we obtain its PM−semimartingale decomposition as

d Ξ(t)

X(t)L(t)
= ∆(t,X) dt +

n∑
ν=1

[
Rν(t,X)− U

(
T − t,X(t)

)
ϑ̃ν(t,X)

]
dWν(t) . (5.4)

Here we have used the notation of (3.7), and have set

Rν(t,X) :=
n∑
i=1

Xi(t)DiU
(
T − t,X(t)

)
σiν(t,X) , (5.5)

∆(t,X) :=
1

2

n∑
i=1

n∑
j=1

Xi(t)Xj(t)αij(t,X)D2
ijU
(
T − t,X(t)

)
(5.6)

+
n∑
i=1

( n∑
j=1

Xj(t)αij(t,X)

X1(t) + · · ·+Xn(t)

)
Xi(t)DiU

(
T − t,X(t)

)
− ∂U

∂τ

(
T − t,X(t)

)
.

From the inequality of (5.2), coupled with the fact that α(t,X) ∈ A(X(t)) holds for all 0 ≤
t <∞ , this last expression is clearly not positive. As a result, the positive process Ξ(·) of (5.3) is
a PM−supermartingale, namely,

L(t)X(t)U
(
T − t,X(t)

)
= Ξ(t) ≥ EPM

[ Ξ(T ) | F(t) ] = EPM[
L(T )X(T ) | F(t)

]
(5.7)

holds PM−a.s., ∀ M ∈M(x) and 0 ≤ t ≤ T ; in particular,

(x1 + · · ·+ xn)U(T,x) = Ξ(0) ≥ EPM
[ Ξ(T ) ] = EPM[

L(T )X(T )
]
, ∀ M ∈M(x) .

With the notation of (4.4), we obtain this manner the following analogue of the inequality in
Proposition 1:

U(T,x) ≥ Φ(T,x) . (5.8)
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Digging in this same spot, just a bit deeper, leads to our next result; this is very much in the spirit
of Theorem 5 in Fleming & Vermes (1989), and of § II.2 in Lions (1982).

Proposition 2. For every horizon T ∈ (0,∞) , initial configuration x ∈ (0,∞)n , and function
U : [0,∞)× (0,∞)n → (0,∞) in the collection U , we have the inequality

U(T,x) ≥ u(T,x) ≥ Φ(T,x) . (5.9)

Furthermore, the Markovian investment rule πU ∈ P∗ generated by this function U through

πUi (t, z) := ziDi logU
(
T − t, z

)
+

zi
z1 + · · ·+ zn

, (t, z) ∈ [0, T ]× (0,∞)n (5.10)

for each i = 1, · · · , n , satisfies for every admissible system M∈M(x) the inequality

Z U(T,x)X(0), πU (T ) ≥ X(T ) , PM − a.s. (5.11)

Proof: For a fixed initial configuration x ∈ (0,∞)n , an arbitrary admissible model M ∈ M(x)
and any function U ∈ U , let us recall the notation of (5.3) and re-cast the dynamics of (5.4) as

d Ξ(t) = Ξ(t)

(
n∑
ν=1

Ψν(t,X) dWν(t) − dC(t)

)
. (5.12)

Here by virtue of (5.4), (5.5) and (3.7) we have written

Ψν(t,X) :=
n∑
i=1

σiν(t,X)

(
Xi(t)Di logU

(
T − t,X(t)

)
+
Xi(t)

X(t)

)
− ϑν(t,X) (5.13)

for ν = 1, · · · , n , and have introduced in the notation of (5.6) the continuous, increasing process

C(t) :=

∫ t

0

(
−∆(s,X)

)
U
(
T − s,X(s)

) ds , 0 ≤ t ≤ T . (5.14)

The expression of (5.13) suggests considering the Markovian investment rule πU ∈ P∗ as in
(5.10); then we cast the expression of (5.13) as

Ψν(t,X) =
n∑
i=1

σiν(t,X)πU(t,X(t))− ϑν(t,X) .

On the strength of (3.4), the value process generated by this investment rule πU starting with initial
wealth ξ := U(T,x)X(0) ≡ Ξ(0) , satisfies the equation

d
(
L(t)Z ξ, πU (t)

)
=
(
L(t)Z ξ, πU (t)

) n∑
ν=1

Ψν(t,X) dWν(t) .

Juxtaposing this to (5.12), and using the positivity of Ξ(·) along with the nonnegativity and non-
decrease of C(·), we obtain the PM−a.s. comparison L(·)Z ξ, πU (·) ≥ Ξ(·) , thus

Z ξ, πU (t) ≥ X(t)U
(
T − t,X(t)

)
, 0 ≤ t ≤ T . (5.15)
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With t = T this leads to (5.11), in conjunction with (5.1). We conclude from (5.11) that the
number U(T,x) > 0 belongs to the set on the right-hand side of (4.1), and the first comparison in
(5.9) follows; the second is just a restatement of (4.4). �

Corollary: Suppose that the function Φ(· , ·) of (4.4) belongs to the collection U . Then Φ(· , ·) is
the smallest element of U ; the infimum in (4.1) is attained; we can take U ≡ Φ in (5.11), (5.10);
and the inequality in (5.9) holds as equality, i.e., Φ(· , ·) coincides with the arbitrage function:

u(T,x) = Φ(T,x) , ∀ (T,x) ∈ (0,∞)× (0,∞)n .

Interpretation: Imagine that the small investor is a manager, who invests for a pension fund and
tries to track or exceed the performance of an index (the market portfolio) over a finite time-
horizon. He has to do this in the face of uncertainty about the characteristics of the market, in-
cluding its covariance and price-of-risk structure, so he acts with extreme prudence and tries to
protect his clients against the most adverse market configurations imaginable (the range of such
configurations is captured by the constraints (1.2), (1.1)). If such adverse circumstances do not
materialize his strategy generates a surplus, captured here by the increasing process C(·) of (5.14)
with U ≡ Φ ≡ u , which can then be returned to the (participants in the) fund. We are borrowing
and adapting this interpretation from Lyons (1995).

Similarly, the Markovian investment rule πU ∈ P∗ generated by the function U ≡ Φ ≡ u in
(5.10), (1.3) implements the best possible outperformance of the market portfolio, as in (5.11).

6 A Verification Result
For the purposes of this section we shall impose the following growth condition on the family
A = {A(y)}y∈Sn of subsets of Sn in (1.6), (1.1): there exists a constant C ∈ (0,∞) , such that
for all y ∈ Sn we have

sup
a∈A(y)

(
max

1≤i,j≤n

yi yj |aij|
(y1 + · · ·+ yn)

)
≤ C

(
1 + ||y||

)
. (6.1)

We shall also need the following strong ellipticity condition, which mandates that for every nonempty,
compact subset K of (0,∞)n , there exists a real constant λ = λK > 0 such that

inf
z∈K

(
inf

a∈A(z)

( n∑
i=1

n∑
j=1

ξi ξj aij

))
≥ λK ||ξ||2 , ∀ ξ ∈ Rn . (6.2)

Assumption A: There exist a continuous function a : (0,∞)n → Sn , a C2−function H : (0,∞)n

→ R , and a continuous square root s(·) of a(·) , namely a(·) = s(·) s′(·) such that, with the
vector-valued function θ(·) =

(
θ1(·), · · · ,θn(·)

)′ defined by

θν(z) :=
n∑
j=1

zj sjν(z)DjH(z) , ν = 1, · · · , n , (6.3)
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the condition (2.13) is satisfied, whereas the system of stochastic differential equations

dXi(t) = Xi(t)
n∑
ν=1

siν(X(t))
[

dWν(t) + θν(X(t)) dt
]
, Xi(0) = xi > 0 , i = 1, . . . , n

(6.4)
has a solution in which the state process X(·) takes values in (0,∞)n . �

A bit more precisely, this assumption posits the existence of a Markovian admissible system
Mo ∈ M∗(x) consisting of a filtered probability space (Ω,F ,P), F = {F(t)}0≤t<∞ and of
two continuous, adapted process X(·) and W (·) on it, such that under the probability measure
P ≡ PMo the process W (·) is n−dimensional Brownian Motion, the process X(·) takes values
in (0,∞)n a.s., and (2.4) holds with ϑν(t,X) = θν(X(t)) as in (6.3), and with σiν(t,X) =
siν(X(t)) , 0 ≤ t <∞ (1 ≤ i, ν ≤ n). The system of equations (6.4) can be cast equivalently as

dXi(t) = Xi(t)

[
n∑
ν=1

siν(X(t)) dWν(t) +
( n∑
j=1

aij(X(t))Xj(t)DjH(X(t))
)

dt

]
. (6.5)

Assumption B: In the notation of the previous paragraph and under the condition

n∑
i=1

n∑
ν=1

zi
∣∣siν(z)

∣∣ ∣∣θν(z)
∣∣ ≤ C

(
1 + ‖z‖

)
, ∀ z ∈ (0,∞)n , (6.6)

we define on (0,∞)n the continuous functions g(z) := e−H(z)
∑n

i=1 zi and k(z) := (1/2)
∑n

i=1∑n
j=1 aij(z)

[
D2
ijH(z) +DiH(z)DjH(z)

]
and assume that the function

G(τ,x) := EPMo

[
g
(
X(τ)

)
exp

{∫ τ

0

k
(
X(t)

)
dt

}]
, (τ,x) ∈ [0,∞)n .

is continuous on [0,∞)× (0,∞) and of class C1,2 on (0,∞)× (0,∞) .

Sufficient conditions for Assumptions A, B to hold are provided in Fernholz & Karatzas (2010),
sections 8 and 9. It is also shown there, that we have the PMo−martingale property

EPMo [
X(T )L(T ) | F(t)

]
= X(t)L(t) · Γ

(
T − t,X(t)

)
, 0 ≤ t ≤ T (6.7)

for the function

Γ(τ, z) := G(τ, z)/g(z) , (τ, z) ∈ [0,∞)× (0,∞)n . (6.8)

This function is of class C1,2 on (0,∞) × (0,∞) , and satisfies the initial condition Γ(0, ·) ≡ 1
on (0,∞)n as well as the linear second-order parabolic equation

∂Γ

∂τ
(τ, z) =

n∑
i=1

n∑
j=1

zizj aij(z)

(
1

2
D2
ijΓ(τ, z) +

DiΓ(τ, z)

z1 + · · ·+ zn

)
, (τ, z) ∈ (0,∞)×(0,∞)n .

(6.9)
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Proposition 3. Verification Argument. Under the Assumptions A, B and the conditions (6.1),
(6.2), suppose that the functions a(·) and Γ(τ, ·) satisfy the inequality

n∑
i=1

n∑
j=1

zizj aij(z)

(
1

2
D2
ijΓ(τ, z) +

DiΓ(τ, z)

z1 + · · ·+ zn

)
(6.10)

≥
n∑
i=1

n∑
j=1

zizj aij

(
1

2
D2
ijΓ(τ, z) +

DiΓ(τ, z)

z1 + · · ·+ zn

)
, ∀ a ∈ A(z)

for every (τ, z) ∈ (0,∞)× (0,∞)n . Then, in the notation of (4.1) – (4.7), we have:

u(T,x) = Φ(T,x) = Γ(T,x) = uMo(T,x) , ∀ (T,x) ∈ (0,∞)× (0,∞)n

for the Markovian admissible system M≡Mo ∈M(x) posited in Assumption A; the conclusions
of Proposition 2 and its Corollary for U ≡ Φ ; as well as the PM−a.s. comparison

L(t)X(t) · u
(
T − t,X(t)

)
≥ EPM[

L(T )X(T ) | F(t)
]
, 0 ≤ t ≤ T ,

which holds for every M∈M(x) and as equality for M≡Mo ∈M(x) .

Proof: Under the condition (6.10) the function Γ(· , ·) belongs to the collection U , as (5.2) is
satisfied with U ≡ Γ on the strength of (6.9) and (6.10); thus, we deduce Γ(T,x) ≥ Φ(T,x)
from (5.8). On the other hand, the equality (6.7) with t = 0 , and the definition of Φ(T,x) in
(4.4), give

Γ(T,x) =
EPMo

[L(T )X(T ) ]

x1 + · · ·+ xn
= uMo(T,x) ≤ Φ(T,x) ,

so the equality Γ(T,x) = Φ(T,x) follows. In other words, we identify Mo as a Markovian
admissible system that satisfies (4.5) and attains the supremum in (4.4). The remaining claims
come from Proposition 2 and its Corollary (in particular, from reading (5.9) with U ≡ Γ ) and
from (5.7), (6.7). �

Remark 2. Proposition 3 holds under conditions weaker than those imposed in Assumptions A and
B above, at the “expense” of a certain localization. More precisely, one posits the existence of
locally bounded and locally Lipschitz functions siν(·) and θν(·) (1 ≤ i, ν ≤ n) for which (2.13),
(6.1), (6.2) and (6.6) are satisfied with a(·) = s(·) s′(·) , and for which there exists a Markovian
admissible system Mo ∈ M∗(x) whose state process X(·) in (6.4) is, under PMo , a strong
Markov process with values in (0,∞)n a.s. Using results from the theory of stochastic flows
(Kunita (1990), Protter (2004)) and from parabolic partial differential equations (Janson & Tysk
(2006), Ekström & Tysk (2009)), Theorem 2 in Ruf (2010) shows that the function Γ(· , ·) is then
of class C1,2 locally on (0,∞)× (0,∞)n , and solves there the equation (6.9).

7 Maximizing the Probability of Containment
We have now gone as far as we could without having to specify the nature of our filtered measurable
space (Ω,F), F = {F(t)}0≤t<∞ . To proceed farther, we shall need to choose this space carefully.
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We shall take as our sample space the set Ω of right-continuous paths ω : [0,∞) → Sn ∪
{∆} . Here ∆ is an additional “absorbing point”; paths stay at ∆ once they get there, i.e., after
T (ω) = inf{t ≥ 0 |ω(t) = ∆} , and are continuous on (0, T (ω)); we are employing here, and
throughout this work, the usual convention inf ∅ =∞ . We also select K(∆) = {(0,On×n)} and
A(∆) = {On×n} , where On×n is the zero matrix. With F [(t) := σ(ω(s), 0 ≤ s ≤ t) , the
filtration F [ = {F [(t)}0≤t<∞ is a standard system in the terminology of Parthasarathy (1967).
This means that each

(
Ω,F [(t)

)
is isomorphic to the Borel σ−algebra on some Polish space;

and that for any decreasing sequence {Aj}j∈N where each Aj is an atom of the corresponding
F [(tj) , for some increasing sequence {tj}j∈N ⊂ [0,∞) , we have ∩j∈NAj 6= ∅ (see the appendix
in Föllmer (1972), as well as Meyer (1972) and Föllmer (1973)).

With all this in place we take (Ω,F), F = {F(t)}0≤t<∞ as our filtered measurable space,
where

F(t) :=
⋂
ε>0

F [(t+ ε) and F := σ
( ⋃

0≤t<∞

F(t)
)
.

An admissible system M ∈ M(x) , x ∈ (0,∞)n defined as in section 2 consists of this
filtered measurable space (Ω,F), F = {F(t)}0≤t<∞ , of a probability measure PM on it, of an
n−dimensional Brownian motion W (·) on the resulting probability space, and of the coördinate
mapping process X(t, ω) = ω(t) , 0 ≤ t <∞ which is assumed to satisfy (2.4), (2.2) and to take
values in (0,∞)n , P−a.s. We shall take

T := inf{t ≥ 0 |Λ(t) = 0} = inf{t ≥ 0 |L(t)X(t) =∞}

in the notation of (3.11), (2.7) and (2.1), and note PM(T <∞) = 0 .

7.1 The Föllmer Exit Measure
With this setup, there exists a probability measure Q on (Ω,F), such that

dPM = Λ(T ) dQ holds on each F(T ) , T ∈ (0,∞) ; (7.1)

we express this property (7.1) by writing PM � Q . Under the measure Q , the process W̃ (·) of
(3.10) is Brownian motion; whereas the processes µ1(·), · · · , µn(·) and Λ(·) of (3.12), (3.11) in
subsection 3.1 are nonnegative Q−martingales.

The “absorbing state” ∆ acts here as a proxy for P−null sets to which the new measure Q
may assign positive mass; the possible existence of such sets makes it important that the filtration
F be “pure”, that is, not completed by P−null sets. This probability measure Q satisfies

EPM
[L(T )X(T ) ]

x1 + · · ·+ xn
= EPM[ (

1/Λ(T )
)
· 1{T >T}

]
= Q

(
T > T

)
, ∀ T ∈ [0,∞) (7.2)

and

T = inf
{
t ≥ 0

∣∣∣ ∫ t

0

∥∥ ϑ̃(s,X)
∥∥2

ds =∞
}
, Q− a.s. (7.3)

We also have, Q− a.e. on {T < T <∞} :

L(T + u)X(T + u) =∞ , ∀ u ≥ 0 ; and

∫ T

0

∥∥ϑ̃(t,X)
∥∥2

dt <

∫ T
0

∥∥ϑ̃(t,X)
∥∥2

dt = ∞ .
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Whereas, Q− a.e. on {T =∞} , we have:

L(T )X(T ) <∞ ,

∫ T

0

∥∥ϑ̃(t,X)
∥∥2

dt < ∞ ; ∀ T ∈ [0,∞) .

We deduce from (7.2) that the arbitrage function of (4.7) for the model M ∈ M(x) is given
by the probability of “containment” under the measure Q , namely, the Q−probability that the
process X(·) , started at x ∈ (0,∞)n , stays in (0,∞)n throughout the time-horizon [0, T ] .

At this point we shall impose the following requirements on K = {K(y)}y∈Sn , the family of
compact, convex subsets of Rn×Sn in (1.1), (1.2): there exists a constant 0 < C <∞ , such that
for all y ∈ Sn we have the strengthening

sup
a∈A(y)

( n∑
i=1

n∑
i=1

yi yj aij

)
≤ C

(
y1 + · · ·+ yn

)2 (7.4)

of the growth condition in (6.1), as well as the “shear” condition

sup
(θ,a)∈K(y)

[(
‖θ‖2

1 + Tr(a)

)
+

(
Tr(a)

1 + ‖θ‖2

)]
≤ C . (7.5)

Then the following identity holds Q−a.s.:

T = min
1≤i≤n

Ti , where Ti := inf{t ≥ 0 |Xi(t) = 0} . (7.6)

For justification of the claims made in this subsection, we refer to section 7 in Fernholz & Karatzas
(2010.a), as well as Delbaen & Schachermayer (1995.a), Pal & Protter (2010) and Ruf (2011) – in
addition, of course, to the seminal work by Föllmer (1972, 1973).

The special structure of the filtered measurable space (Ω,F), F = {F(t)}0≤t<∞ that we se-
lected in this section is indispensable for this construction and for the representation (7.2); whereas
the inequality || θ ||2 ≤ C(1+Tr(a)), ∀ (θ, a) ∈ K(y) , y ∈ Sn from condition (7.5) is important
for establishing the representation of (7.6).

7.2 Auxiliary Admissible Systems
Let us fix then an initial configuration x = (x1, · · · , xn)′ ∈ (0,∞)n and denote by N(x) the
collection of stochastic systems N that consist of the filtered measurable space (Ω,F), F =

{F(t)}0≤t<∞ , of a probability measure Q ≡ QN , of an Rn−valued Brownian motion W̃(·)
under Q , and of the coördinate mapping process X(t, ω) = ω(t) , (t, ω) ∈ [0,∞) × Ω which
satisfies Q−a.s. the system of stochastic equations in (3.9):

dXi(t) = Xi(t)

(∑n
j=1 αij(t,X)Xj(t)

X1(t) + · · ·+Xn(t)
dt +

n∑
ν=1

σiν(t,X) dW̃ν(t)

)
(7.7)

= Xi(t)
n∑
ν=1

σiν (t,X)

(
dW̃ν(t) +

n∑
j=1

σjν(t,X)Xj(t)

X1(t) + · · ·+Xn(t)
dt

)
, i = 1, · · · , n .
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Here the elements σiν : [0,∞)× Ω→ R , 1 ≤ i, ν ≤ n of the matrix σ(·, ·) = {σiν(·, ·)}1≤i,ν≤n
are progressively measurable functionals that satisfy, in the notation of (1.6):

σ(t, ω)σ′(t, ω) =: α(t, ω) ∈ A
(
ω(t)

)
, ∀ (t, ω) ∈ [0,∞)× Ω . (7.8)

As in subsection 2.3, we shall denote by N∗(x) the subcollection of N(x) that consists of
Markovian auxiliary admissible systems, namely, those for which the equations of (7.7) are sat-
isfied with α(t,X) = a(t,X(t)) and σ(t,X) = s(t,X(t)) , 0 ≤ t < ∞ and with measurable
functions a : [0,∞) ×Sn → Sn and s : [0,∞) ×Sn → L(Rn;Rn) that satisfy the condition
s(t,y) s′(t,y) = a(t,y) ∈ A(y) , ∀ (t,y) ∈ [0,∞)×Sn . We invoke the same Markovian selec-
tion results as in subsection 2.3, to ensure that the process X(·) is strongly Markovian under any
given QN , N ∈ N∗(x) .

By analogy with (7.6), we consider

T̂ (ω) := min
1≤i≤n

Ti(ω) with Ti(ω) = inf{t ≥ 0 |ωi(t) = 0} . (7.9)

Then for every ω ∈ {T̂ <∞} we have∫ T

0

Tr
(
α(t, ω)

)
dt <

∫ T̂ (ω)

0

Tr
(
α(t, ω)

)
dt = ∞ , ∀ 0 ≤ T < T̂ (ω) ; (7.10)

whereas
∫ T

0
Tr
(
α(t, ω)

)
dt <∞ , 0 ≤ T <∞ holds for every ω ∈ {T̂ =∞} .

Remark 3. As in subsection 2.2, solving the stochastic equation (7.7) subject to the condition (7.8)
amounts to requiring that the process

u
(
t,X(t)

)
−
∫ t

0

(
∂u

∂s

(
s,X(s)

)
+ L̂u

(
X(s)

))
ds , 0 ≤ t <∞

be a local supermartingale, for every continuous u : (0,∞) × Sn → R which is of class C1,2

on (0,∞) × (0,∞)n and has compact support; here L̂ is the nonlinear second-order partial
differential operator in (1.5). �

Remark 4. The total capitalization process X(·) = X1(·)+ · · ·+Xn(·) satisfies, by virtue of (7.7),
the equation

dX(t) = X(t)
[

dÑ(t) + d〈Ñ〉(t)
]
, Ñ(·) :=

n∑
ν=1

∫ ·
0

( n∑
i=1

(
Xi(t)/X(t)

)
σiν(t,X)

)
dW̃ν(t) .

Under the measure Q , the process Ñ(·) is a continuous local martingale with quadratic variation

〈Ñ〉(t) =
n∑
i=1

n∑
j=1

∫ t

0

Xi(s)αij(s,X)Xj(s)
(
X1(s) + · · ·+Xn(s)

)−2
ds ≤ C t

from (7.4), so the total capitalization process

X(t) = X(0) · e Ñ(t)+(1/2) 〈Ñ〉(·) = X(0) · e B̃(u)+(u/2)
∣∣∣
u= 〈Ñ〉(t)

, 0 ≤ t <∞
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takes values in (0,∞) , Q−a.e.; here B̃(·) is a one-dimensional Q−Brownian motion. This is in
accordance with our selection of the punctured nonnegative orthant Sn in (1.1) as the state-space
for the process X(·) under Q .

Under this measure, the relative weights µi(·) = Xi(·)/X(·) , i = 1, · · · , n are nonnegative
local martingales and supermartingales, in accordance with (3.12); and since

∑n
i=1 µi(·) ≡ 1

these processes are bounded, so they are actually martingales. Once any one of the processes
X1(·), · · · , Xn(·) (that is, any one of the processes µ1(·), · · · , µn(·) ) becomes zero, it stays at
zero forever; of course, not all of them can vanish at the same time. �

• In subsection 7.1 we started with an arbitrary admissible system M ∈M(x) and produced an
“auxiliary” admissible system N ∈ N(x) , for which the property (7.2) holds. Thus, for every
(T,x) ∈ (0,∞)× (0,∞)n we deduce

Q(T,x) := sup
N∈N(x)

QN
(
T > T

)
≥ sup
M∈M(x)

(
EPM

[L(T )X(T ) ]

x1 + · · ·+ xn

)
= Φ(T,x) . (7.11)

7.3 Preparatory Steps
We suppose from now onwards that, for every progressively measurable functional α : [0,∞) ×
Ω→ Sn which satisfies

α(t, ω) ∈ A(ω(t)) for all (t, ω) ∈ [0,∞)× Ω , (7.12)

we can select a progressively measurable functional ϑ : [0,∞)× Ω→ Rn with(
ϑ(t, ω), α(t, ω)

)
∈ K

(
ω(t)

)
, ∀ (t, ω) ∈ [0,∞)× Ω ; (7.13)

see the “measurable selection” results in chapter 7 of Bertsekas & Shreve (1978). We introduce
now the functional

ϑ̃(t, ω) := ϑ(t, ω)− σ′(t, ω)ω(t) /
(
ω1(t) + · · ·+ ωn(t)

)
(7.14)

as in (3.7) and also, by analogy with (7.3), the stopping rule

T (ω) := inf
{
t ≥ 0

∣∣∣ ∫ t

0

∥∥ ϑ̃(s, ω)
∥∥2

ds =∞
}

; (7.15)

cf. Levental & Skorohod (1995), where stopping rules of this type also play very important rôles
in the study of arbitrage.

We recall now (7.10); on the strength of the requirement (7.5), this gives∫ T

0

∥∥ϑ(t, ω)
∥∥2

dt <

∫ T̂ (ω)

0

∥∥ϑ(t, ω)
∥∥2

dt = ∞ , 0 ≤ T < T̂ (ω) (7.16)

for every ω ∈ {T̂ < ∞} ; and
∫ T

0

∥∥ϑ(t, ω)
∥∥2
dt < ∞ , ∀ T ∈ [0,∞) for every ω ∈ {T̂ = ∞} .

In conjunction with (7.4), we obtain from (7.16) that∫ T

0

∥∥ ϑ̃(t, ω)
∥∥2

dt <

∫ T̂ (ω)

0

∥∥ ϑ̃(t, ω)
∥∥2

dt = ∞ , 0 ≤ T < T̂ (ω)

holds for every ω ∈ {T̂ < ∞} ; and that
∫ T

0

∥∥ϑ̃(t, ω)
∥∥2

dt < ∞ , ∀ T ∈ [0,∞) holds for every
ω ∈ {T̂ =∞} .

We deduce for the stopping rules of (7.15) and (7.9) the identification T̂ (ω) = T (ω) .
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7.4 The Same Thread, in Reverse
Let us fix now a stochastic system N ∈ N(x) as in subsection 7.2, pick a progressively measurable
functional α : [0,∞)× Ω→ Sn with α(t, ω) ∈ A(ω(t)) for all (t, ω) ∈ [0,∞)× Ω , and select
a progressively measurable functional ϑ : [0,∞)×Ω→ Rn as in (7.13). For this ϑ(· , ·) and this
N ∈ N(x) , we define ϑ̃(· , ·) by (7.14) as well as

Λ(t) = exp
{∫ t

0

(
ϑ̃(s,X)

)′
dW̃ (s)− 1

2

∫ t

0

∥∥ϑ̃(s,X)
∥∥2

ds
}
, for 0 ≤ t < T (7.17)

as in (3.11), and set
Λ(T + u) = 0 for u ≥ 0 on {T <∞} (7.18)

in the notation of (7.15). The resulting process Λ(·) is a local martingale and a supermartingale
under Q , and we have T (X) = inf{t ≥ 0 |Λ(t) = 0} , Q−a.e.

We us introduce also the sequence of F−stopping rules

Sn(ω) := inf
{
t ≥ 0

∣∣∣ ∫ t

0

∥∥ ϑ̃(s, ω)
∥∥2

ds ≥ 2 log n
}
, n ∈ N ,

which satisfy limn→∞ ↑ Sn(ω) = T (ω) and exp
{

1
2

∫ Sn(ω)

0
|| ϑ̃(t, ω)||2 dt

}
≤ n (∀ n ∈ N) , for

every ω ∈ Ω . From Novikov’s theorem (e.g., Karatzas & Shreve (1991), page 198), Λ( · ∧ Sn)
is a uniformly integrable Q−martingale; in particular, EQ(Λ(Sn)) = 1 holds for every n ∈ N .
Thus, the recipe

Pn(A) := EQ[Λ(Sn) · 1A
]
, A ∈ F(Sn)

defines a consistent sequence, or “tower”, of probability measures {Pn}n∈N on (Ω,F) . Appealing
to the results in Parthasarathy (1967), pp. 140-143 (see also the Appendix of Föllmer (1972)), we
deduce the existence of a probability measure P on (Ω,F) such that

P(A) = Pn(A) = EQ[Λ(Sn) · 1A
]

holds for every A ∈ F(Sn) , n ∈ N (7.19)

(here again, the special structure imposed in this section on the filtered measurable space (Ω,F), F =
{F(t)}0≤t<∞ is indispensable). Therefore, for every T ∈ (0,∞) we have

P(Sn > T ) = EQ[Λ(Sn) · 1{Sn>T}
]

= EQ[Λ(T ) · 1{Sn>T}
]

by Optional Sampling; whereas Monotone Convergence leads to

P(T > T ) = EQ[Λ(T )1{T >T}
]
. (7.20)

The following result echoes similar themes in Cheridito et al. (2005).

Lemma 1. The process Λ(·) of (7.17), (7.18) is a Q−martingale, if and only if we have

P(T <∞) = 0

(that is, if and only if the process X(·) never hits the boundary of the orthant (0,∞)n , P−a.s.).
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Proof: If P(T <∞) = 0 holds, the nonnegativity of Λ(·) and (7.20) give

1 = P(T > T ) = EQ[Λ(T )1{T >T}
]
≤ EQ[Λ(T )

]
, ∀ T ∈ (0,∞) .

But Λ(·) is a Q−supermartingale, so the reverse inequality EQ
[

Λ(T )
]
≤ Λ(0) = 1 also holds.

We conclude that EQ[ Λ(T ) ] = 1 holds for all T ∈ (0,∞) , so Λ(·) is a Q−martingale.

If, on the other hand, Λ(·) is a Q−martingale, then EQ[ Λ(T ) ] = 1 and (7.20) give

P(T ≤ T ) = EQ(Λ(T )
)
− EQ(Λ(T )1{T >T}

)
= EQ(Λ(T )1{T ≤T}

)
= EQ(Λ(T )1{T ≤T}

)
= 0

for every T ∈ [0,∞) , from Optional Sampling and the fact that Λ(T ) = 0 holds Q−a.e. on
{T < ∞}. We conclude P(T < ∞) = 0 ; in conjunction with the identification T ≡ T̂ and
(7.9), this means that the coördinate mapping process X(·) never reaches the boundary of (that is,
takes values in) the strictly positive orthant (0,∞)n , P−a.e. �

When the conditions of Lemma 1 prevail, the process

W (·) = W̃ (·)−
∫ ·

0

ϑ̃(t,X) dt

is Brownian motion under the probability measure P ≡ PM introduced in (7.19). This measure
satisfies the equations of (7.2); whereas the process X(·) solves PM−a.s. the system

dXi(t) = Xi(t)
n∑
ν=1

σiν(t,X)
[

dWν(t) + ϑν(t,X) dt
]
, Xi(0) = xi > 0

for i = 1, . . . , n , as in (2.4). It is then not hard to check that L(·) defined by (2.7) satisfies
PM−a.s. the identity L(·)X(·) = (x1 + · · ·+ xn)/Λ(·) in accordance with (3.11).

• We formalize these considerations as follows.

Assumption C : Suppose that the collection of sets K in (1.1) satisfies (7.4), (7.5), and that for
any given progressively measurable functional α : [0,∞)× Ω→ Sn which satisfies (7.12) and∫ T

0

Tr
(
α(t,w)

)
dt <∞ for all (T,w) ∈ [0,∞)×W , (7.21)

there exists a progressively measurable functional ϑ : [0,∞)×Ω→ Rn that satisfies the condition
(7.13), thus also by virtue of (7.5):∫ T

0

‖ϑ(t,w)‖2 dt <∞ for all (T,w) ∈ [0,∞)×W . (7.22)

The analysis of this subsection shows that, under Assumption C and starting with any initial
configuration x = (x1, · · · , xn)′ ∈ (0,∞)n and with an arbitrary “auxiliary” admissible stochastic
system N =

(
(Ω,F), F, Q , X(·), W̃ (·)

)
in N(x) as in subsection 7.2, the process Λ(·) of

(7.18) is a Q−martingale and we can construct a “primal” admissible system M ∈ M(x) as
in subsection 2.1 (i.e., with the canonical process X(·) taking values in (0,∞)n , PM−a.s.), for
which (7.2) holds and we have PM � Q as in (7.1). We deduce
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Q(T,x) = sup
N∈N(x)

QN
(
T > T

)
≤ sup
M∈M(x)

(
EPM

[L(T )X(T ) ]

x1 + · · ·+ xn

)
= Φ(T,x) .

The reverse inequality Q(T,x) ≥ Φ(T,x) was established in (7.11). This way, for every function
U : [0,∞)× (0,∞)n → (0,∞) in the collection U , we can strengthen (5.9) to

U(T,x) ≥ u(T,x) ≥ Φ(T,x) = Q(T,x) , ∀ (T,x) ∈ (0,∞)× (0,∞)n . (7.23)

We have established the following result.

Proposition 4. Recall the functions u(· , ·) , Φ(· , ·) and Q(· , ·) defined on (0,∞)× (0,∞)n by
(4.1), (4.4) and (7.11), respectively, and impose Assumption C. Then (7.23) holds for every function
U(· , ·) ∈ U .

Remark 5. Here is a situation where Assumption C prevails: Suppose that (7.4) holds and that,
for every z ∈ (0,∞)n and a ∈ A(z) , we have (θ, a) ∈ K(z) for θ given by θν =

∑n
j=1 sjν ,

ν = 1, · · · , n and ss′ = a . Then for any progressively measurable α : [0,∞) × Ω → Sn
that satisfies (7.21) we select the progressively measurable functional ϑ : [0,∞) × Ω → Rn via
ϑν(t, ω) =

∑n
j=1 σjν(t, ω) , ν = 1, · · · , n . This choice induces

ϑ̃ν(t, ω) =
n∑
i=1

(
1− ωi(t)

ω1(t) + · · ·+ ωn(t)

)
σiν(t, ω) , ν = 1, · · · , n

which obeys
∫ T

0
‖ϑ̃(t,w)‖2 dt < ∞ as in (7.22) for all (T,w) ∈ [0,∞) ×W ; the process Λ(·)

of (7.17) and (7.18) is a Q−martingale; whereas (2.4) becomes

dXi(t) = Xi(t)

[ n∑
ν=1

σiν(t,X) dWν(t) +
( n∑
j=1

αij(t,X)
)

dt

]
, Xi(0) = xi > 0

for i = 1, · · · , n . The condition (7.21) guarantees now that X(·) takes values in (0,∞)n,
PM−a.s. in the resulting primal admissible system M∈M(x) .

8 Dynamic Programming
The quantity Q(T,x) defined in (7.11) is the value of a stochastic control problem: namely, the
maximal “containment” probability, over all measures QN with N ∈ N(x) , that the process
X(·) with dynamics (7.7), initial configuration X(0) = x ∈ (0,∞)n , and controlled through the
choice of progressively measurable functional α(· , ·) as in (7.8), (7.10), does not hit the boundary
of the positive orthant by time T .

Let us suppose that the resulting function Q(· , ·) is continuous on (0,∞) × (0,∞)n . Then
it can be checked – as in Lions (1982), Lemma II.1 and Lions (1983.a), Theorem II.4 – that it
satisfies as well the following Dynamic Programming Principle: for every initial configuration
x ∈ (0,∞)n, the process

Q
(
T − t, X(t)

)
1{T >t} , 0 ≤ t ≤ T is a QN − supermartingale, ∀ N ∈ N(x) . (8.1)
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(See El Karoui et al. (1987), Haussmann & Lepeltier (1990) for results in a similar vein.) Equiv-
alently, the process L(t)X(t) Q

(
T − t, X(t)

)
, 0 ≤ t ≤ T is a PM−supermartingale, for every

M∈M(x) .
Consider now an arbitrary continuous function Ŭ : [0,∞)× (0,∞)n → [0,∞) which satisfies

Ŭ(0, ·) ≡ 1 on (0,∞)n and is such that, for every N ∈ N(x) and x ∈ (0,∞)n , the process
Ŭ
(
T − t, X(t)

)
1{T >t} , 0 ≤ t ≤ T is a QN−supermartingale. We shall denote by Ŭ the

collection of all such functions, and note that U ⊆ Ŭ and Q ∈ Ŭ . From optional sampling we
have then for every N ∈ N(x) the comparisons

Ŭ(T,x) ≥ EQN [
Ŭ
(
0, X(T )

)
1{T >T}

]
= QN

(
T > T

)
,

thus also Ŭ(T,x) ≥ Q(T,x) , ∀ (T,x) ∈ (0,∞)× (0,∞)n .
In other words, the function Q(· , ·) defined in (7.11) is the smallest element of the collection

Ŭ . It is also clear from this line of reasoning that No ∈ N(x) attains the supremum Q(T,x) =
supN∈N(x) QN

(
T > T

)
in (7.11), if and only if the process Q

(
T − t, X(t)

)
1{T >t} , 0 ≤ t ≤ T

is a QNo−martingale.

Theorem 1. Suppose that Assumption C and the conditions (2.9)-(2.11) hold, and that the function
Q(· , ·) of (7.11) is continuous on (0,∞)× (0,∞)n . Then the infimum in (4.1) is attained, and

u(T,x) = Φ(T,x) = Q(T,x) , ∀ (T,x) ∈ (0,∞)× (0,∞)n . (8.2)

Proof: Consider an arbitrary function Ŭ(· , ·) in the collection Ŭ just defined, and fix an arbitrary
pair (T,x) ∈ (0,∞) × (0,∞)n ; then for every ε > 0 , consider a mollification Uε(· , ·) ∈ U of
the function Ŭ(· , ·) with Uε(T,x) ≤ Ŭ(T,x) + ε .

Proposition 2 gives then u(T,x) ≤ Ŭ(T,x) + ε . Since ε > 0 is arbitrary, this shows that
u(T,x) is dominated by Q(T,x) , the infimum of Ŭ(T,x) over all functions Ŭ(· , ·) ∈ Ŭ . But
the reverse inequality u(T,x) ≥ Q(T,x) holds on the strength of (7.23), so (8.2) follows. �

8.1 The HJB Equation
Under the conditions of Theorem 1, the arbitrage function u(· , ·) is equal to the function Q(· , ·)
of (7.11) and is continuous on (0,∞)× (0,∞)n . Thanks to the Dynamic Programming Principle
of (8.1), it is also a viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation

∂U

∂τ
(τ, z) = sup

a∈A(z)

n∑
i=1

n∑
j=1

zizj aij

(
1

2
D2
ijU(τ, z) +

DiU(τ, z)

z1 + · · ·+ zn

)
(8.3)

on (0,∞)× (0,∞)n ; cf. Lions (1982), Theorem III.1 or Lions (1983.b), Theorem I.1.
If in addition to being continuous, as we assumed in Theorem 1, the function Q(· , ·) of (7.11)

is of class C1,2 locally on (0,∞) × (0,∞)n , then the arbitrage function u(· , ·) is not only a
viscosity solution but actually a classical solution of the HJB equation (8.3). This is the case, for
instance, under the combined conditions of Theorem 1 and Proposition 3; and then the arbitrage
function u(· , ·) also satisfies on the domain (0,∞)× (0,∞)n the linear parabolic equation

∂U

∂τ
(τ, z) =

n∑
i=1

n∑
j=1

zizj aij(z)

(
1

2
D2
ijU(τ, z) +

DiU(τ, z)

z1 + · · ·+ zn

)
(8.4)
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with a : (0,∞)n → Sn as in Assumption A or Remark 2, in addition to the initial condition

U(0, ·) ≡ 1 on (0,∞)n . (8.5)

In particular, the arbitrage function u(· , ·) satisfies in this case the rquirement (6.10) and belongs
to the class U of section 5.

Recalling Propositions 1-3 and Theorem 1, we summarize the above discussion as follows.

Theorem 2. Suppose that the conditions (2.9)-(2.11), (6.1), (6.2), and the Assumptions A, B and
C are in force.

Then the arbitrage function u(· , ·) is the smallest element of the class U , as well as a classical
solution of both the HJB equation (8.3) and of the linear parabolic equation (8.4), subject to
(8.5). Furthermore (8.2) holds, the infimum in (4.1) is attained, and the Markovian investment rule
πU(· , ·) in (5.10) with U ≡ u satisfies (5.11) for every admissible system M∈M(x) .

Remark 6. We note that Theorem 2 is in agreement with general regularity theory for fully non-
linear parabolic equations, as in Lions (1983.c), Theorem II.4; Krylov (1987), section 6.5; Krylov
(1990); Wang (1992), Theorems II.3.2 and III.2; or Lieberman (1996), Chapter XIV.

As we mentioned already, Assumptions A, B can be replaced in Theorem 2 by the conditions
of Remark 2. We conjecture that the conclusions of Theorem 2 should hold under even weaker
assumptions, but leave this issue for future research.

We also remark that the function V (t, z) := (z1 + · · ·+zn) u(t, z) , (τ, z) ∈ (0,∞)× (0,∞)n

satisfies an HJB-type equation simpler than (8.3), namely, the Pucci maximal equation

∂V

∂τ
(τ, z) =

1

2
sup
a∈A(z)

n∑
i=1

n∑
j=1

zizj aij D
2
ijV (τ, z) , (8.6)

along with the initial condition V (0, z) = z1 + · · ·+ zn . In the setting of Theorem 2, the equation
(8.6) reduces to

∂V

∂τ
(τ, z) =

1

2

n∑
i=1

n∑
j=1

zizj aij(z)D2
ijV (τ, z) .

8.2 An Example
Let us go back to the volatility-stabilized model introduced in Fernholz & Karatzas (2005), but
now with some “Knightian” uncertainty regarding its volatility structure:

1 ≤ αii(t)µi(t) ≤ 1 + δ , 0 ≤ t <∞

for some given δ ≥ 0 . The case δ = 0 corresponds to the variance structure of the model studied
in Fernholz & Karatzas (2005, 2009).

More specifically let us assume that, for any given y ∈ Sn , the compact, convex subset A(y)
of Sn in (1.6) consists of all matrices a = {aij}1≤i,j≤n with aij = 0 for j 6= i and

yi aii = η2 (y1 + · · ·+ yn) ; i = 1, · · · , n , 1 ≤ η ≤ 1 + δ .
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Whereas the sets of (1.1) are given as

K(y) =
{

(θ, a) | a ∈ A(y), θ =
(
ζ
√
a11 , · · · , ζ

√
ann

)′ with ζ ∈
[√

C1 ,
√
C2

] }
for some given constants C1 ∈ (0, 1] , C2 ∈ (1,∞) ; these choices satisfy (7.4), (7.5).

The condition (6.2) is satisfied in this case automatically (in fact, with λ ≡ 1), as are (6.1) and
(6.6): it suffices to take

aii(z) = (z1 + · · ·+ zn)/zi , i = 1, · · · , n (8.7)

and H(z) =
∑n

i=1 log zi , which induces θi(z) =
√

aii(z) in (6.3). These functions are all
locally bounded and locally Lipschitz continuous on (0,∞)n .

The HJB equation (8.3) satisfied by the arbitrage function u(· , ·) becomes

∂U

∂τ
(τ, z) = sup

1≤η≤1+δ

[
η2
{ 1

2

n∑
i=1

(z1 + · · ·+ zn) ziD
2
iiU(τ, z) +

n∑
i=1

ziDiU(τ, z)
}]

,

and reduces to the linear parabolic equation

∂U

∂τ
(τ, z) =

1

2

n∑
i=1

(z1 + · · ·+ zn) ziD
2
iiU(τ, z) +

n∑
i=1

ziDiU(τ, z) (8.8)

of (8.4) for the choice of variances in (8.7). The reason for this reduction is that the expression on
the left-hand side of (8.8) is negative, so we have considerable simplification in this case.

Remark 7. In this example, the arbitrage function u(· , ·) can be represented as

u(T, z) =
z1 · · · zn

z1 + · · ·+ zn
E
[
X1(T ) + · · ·+Xn(T )

X1(T ) · · ·Xn(T )

]
in terms of the components of the (0,∞)n−valued capitalization process X(·) = (X1(·), · · · , Xn(·))′ .
These are now time-changed versions Xi(·) = Ψi

(
A(·)

)
, i = 1, · · · , n of the independent

squared-Bessel processes

dΨi(u) = 4u du+ 2
√

Ψi(u) dβi(u) , Ψi(0) = zi ,

run with a time change A(t) = (1/4)
∫ t

0

(
X1(s)+· · ·+Xn(s)

)
ds common for all components, and

with β1(·), · · · , βn(·) independent standard Brownian motions; see Fernholz & Karatzas (2005,
2009), Goia (2009), Pall (2011) for more details.

9 A Stochastic Game
For any given investment rule Π ∈ P and admissible system M ∈ M(x) , let us consider the
quantity

ξΠ,M (T,x) := inf
{
r > 0 : PM

(
Z rX(0),Π(T ) ≥ X(T )

)
= 1

}
. (9.1)

This measures, as a proportion of the initial total market capitalization, the smallest initial capital
that an investor who uses the rule Π and operates within the market model M , needs to set aside

25



at time t = 0 in order for his wealth to be able to “catch up with the market portfolio” by time
t = T , with PM−probability one.

Our next result exhibits the arbitrage function u(· , ·) of (4.1) as the min-max value of a zero-
sum stochastic game between two players: the investor, who tries to select the rule Π ∈ P so as
to make the quantity of (9.1) as small as possible; and “nature”, or the goddess Tyche herself, who
tries to thwart him by choosing the admissible system or “model” M∈M(x) to his detriment.

Theorem 3. Under the conditions of Theorem 1, we have

u(T,x) = inf
Π∈P

(
sup

M∈M(x)

ξΠ,M (T,x)
)

= sup
M∈M(x)

(
inf
Π∈P

ξΠ,M (T,x)
)
. (9.2)

Proof: For the quantities of (9.1) and (4.7) we claim

ξΠ,M (T,x) ≥ uM (T,x) , ∀ (Π,M) ∈ P×M(x) . (9.3)

Indeed, if the set on the right-hand side of (9.1) is empty, we have ξΠ,M (T,x) =∞ and nothing
to prove; if, on the other hand, this set is not empty, then for any of its elements r > 0 the process
L(·)V rX(0),Π(·) is a PM−supermartingale and therefore (4.6), that is, r ≥ uM (T,x) , still holds
and (9.3) follows again.

Taking the infimum with respect to Π ∈ P on the left-hand side of (9.3), then the supremum
of both sides with respect to M∈M(x) , we obtain

G(T,x) := sup
M∈M(x)

(
inf
Π∈P

ξΠ,M (T,x)
)
≥ sup
M∈M(x)

uM (T,x) = Φ(T,x)

from (4.7). The quantity G(T,x) is the lower value of the stochastic game under consideration.
In order to complete the proof of (9.2) it suffices, on the strength of Theorem 1, to show that

the upper value
G(T,x) := inf

Π∈P

(
sup

M∈M(x)

ξΠ,M (T,x)
)
≥ G(T,x)

of this game satisfies
G(T,x) ≤ u(T,x) . (9.4)

To see this, we introduce for each given investment rule Π ∈ P the quantity

hΠ (T,x) := inf
{
r > 0 : PM

(
Z rX(0),Π (T ) ≥ X(T )

)
= 1 , ∀M ∈M(x)

}
;

that is, the smallest proportion r > 0 of the initial market capitalization that allows an in-
vestor using the rule Π to be able to “catch up with the market portfolio” by time t = T with
PM−probability one, no matter which admissible system (model) M might materialize. We have
clearly

hΠ (T,x) ≥ u(T,x) ∨ ξΠ,M (T,x) , ∀ (Π,M) ∈ P×M(x) , (9.5)

which leads to

u(T,x) = inf
Π∈P

hΠ (T,x) ≥ inf
Π∈P

(
sup

M∈M(x)

ξΠ,M (T,x)
)

= G(T,x) (9.6)

and proves (9.4). �
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9.1 A Least Favorable Model, and the Investor’s Best Response
Let us place ourselves now in the context of Theorem 2 and observe that Proposition 1, along with
Proposition 2 and its Corollary, yields

ξΠ,Mo
(T,x) ≥ uMo (T,x) = Φ(T,x) = ξΠo,M0

(T,x) , ∀ Π ∈ P , (9.7)

by virtue of (9.3) for M ≡ Mo and of (5.11) for U ≡ Φ . Here Mo is the “least favorable
admissible system” that attains the supremum over M(x) in (4.4), and Πo ≡ πΦ denotes the
investment rule of (5.10) with U ≡ Φ .

In this setting, the investment rule Πo ∈ P attains the infimum infΠ∈P hΠ (T,x) = u(T,x)
in (9.6), and we obtain then

hΠo (T,x) = u(T,x) = Φ(T,x) = ξΠo,M0
(T,x) ≥ ξΠo,M (T,x) , ∀ M ∈M(x) (9.8)

on the strength of (9.5). Putting (9.7) and (9.8) together we deduce

ξΠ,Mo
(T,x) ≥ u (T,x) = ξΠo,M0

(T,x) ≥ ξΠo,M (T,x) , ∀ (Π,M) ∈ P×M(x) ,

the saddle property of the pair (Πo,Mo) ∈ P×M(x) .
In particular, the investment rule Πo ≡ πΦ of (5.10) with U ≡ Φ is seen to be the investor’s

best response to the least favorable admissible system Mo ∈ M(x) of Proposition 1; and vice-
versa. In this sense the investor, once he has figured out a least favorable admissible system Mo ,
can allow himself the luxury to “forget” about model uncertainty and concentrate on finding an
investment rule Πo ∈ P that satisfies ξΠ,Mo

(T,x) ≥ ξΠo,Mo
(T,x) , ∀ Π ∈ P as in (9.7), that

is, on outperforming the market portfolio with the least initial capital within the context of the least
favorable model Mo .
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